IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v112y2017icp302-313.html
   My bibliography  Save this article

Robust model design for evaluation of power characteristics of the cleaner energy system

Author

Listed:
  • Garg, Akhil
  • Vijayaraghavan, Venkatesh
  • Zhang, Jian
  • Lam, Jasmine Siu Lee

Abstract

Hydrogen based fuel cell such as solid oxide fuel cell (SOFC) combines compressed hydrogen and oxygen from the air to produce electricity. Since, this technology does not emit emissions and therefore also known as cleaner energy systems. For improving the performance of the fuel cell, it is highly important to understand the effect of operating conditions on its performance. In this context, experimental studies are conducted to understand the fundamentals of the fuel cell mechanism. In view of limited resources, hence numerical studies also become crucial for design of robust models for determining and optimizing the power density based on the dynamic operating conditions. In real scenario, there exist uncertainties in precise measurement of operating conditions such as the temperature and the flow rate of hydrogen, nitrogen and oxygen. In this work, the automated neural search (ANS) approach is proposed to formulate the relationships between power density and the operating conditions. Two types of uncertainties, namely the settings of the ANS approach and in the operating conditions are considered to formulate the robust models. Optimization performed on the robust model reveals that the operating temperature of 778 °C, hydrogen and oxygen flow rate of 1 L/min are the optimum settings for achieving maximum power density of 574.2 mW/cm2.

Suggested Citation

  • Garg, Akhil & Vijayaraghavan, Venkatesh & Zhang, Jian & Lam, Jasmine Siu Lee, 2017. "Robust model design for evaluation of power characteristics of the cleaner energy system," Renewable Energy, Elsevier, vol. 112(C), pages 302-313.
  • Handle: RePEc:eee:renene:v:112:y:2017:i:c:p:302-313
    DOI: 10.1016/j.renene.2017.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    2. Choudhury, Arnab & Chandra, H. & Arora, A., 2013. "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 430-442.
    3. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    4. Contestabile, Marcello, 2010. "Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs," Energy Policy, Elsevier, vol. 38(10), pages 5320-5334, October.
    5. repec:cdl:itsdav:qt5jn024fr is not listed on IDEAS
    6. Sadeghi, Mohsen & Chitsaz, Ata & Mahmoudi, S.M.S. & Rosen, Marc A., 2015. "Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell," Energy, Elsevier, vol. 89(C), pages 191-204.
    7. Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.
    8. repec:cdl:uctcwp:qt3dn7n50v is not listed on IDEAS
    9. repec:cdl:itsdav:qt1bt204qt is not listed on IDEAS
    10. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2015. "Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system," Energy, Elsevier, vol. 79(C), pages 455-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangwu Ma & Hongbin Yin & Lulu Wei & Guangdong Tian & Hui Gao, 2018. "Design and Optimization of IPM Motor Considering Flux Weakening Capability and Vibration for Electric Vehicle Applications," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    2. Yang, Li & Zou, Haobo & Shang, Chao & Ye, Xiaoming & Rani, Pratibha, 2023. "Adoption of information and digital technologies for sustainable smart manufacturing systems for industry 4.0 in small, medium, and micro enterprises (SMMEs)," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    3. Junwei Liu & Vinay Kumar Gadi & Ankit Garg & Suriya Prakash Ganesan & Anasua GuhaRay, 2019. "A Novel Approach to Interpret Soil Moisture Content for Economical Monitoring of Urban Landscape," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    4. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    2. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    3. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    4. Marocco, Paolo & Ferrero, Domenico & Lanzini, Andrea & Santarelli, Massimo, 2019. "Benefits from heat pipe integration in H2/H2O fed SOFC systems," Applied Energy, Elsevier, vol. 241(C), pages 472-482.
    5. Guk, Erdogan & Kim, Jung-Sik & Ranaweera, Manoj & Venkatesan, Vijay & Jackson, Lisa, 2018. "In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples," Applied Energy, Elsevier, vol. 230(C), pages 551-562.
    6. Wang, Nan & Wang, Dongxuan & Xing, Yazhou & Shao, Limin & Afzal, Sadegh, 2020. "Application of co-evolution RNA genetic algorithm for obtaining optimal parameters of SOFC model," Renewable Energy, Elsevier, vol. 150(C), pages 221-233.
    7. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    8. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    9. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
    10. Murat Peksen, 2021. "Hydrogen Technology towards the Solution of Environment-Friendly New Energy Vehicles," Energies, MDPI, vol. 14(16), pages 1-6, August.
    11. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    12. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    13. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    14. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    15. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    16. Li Zhai & Liwen Lin & Xinyu Zhang & Chao Song, 2016. "The Effect of Distributed Parameters on Conducted EMI from DC-Fed Motor Drive Systems in Electric Vehicles," Energies, MDPI, vol. 10(1), pages 1-17, December.
    17. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    18. Li, Feng & Yuan, Yupeng & Yan, Xinping & Malekian, Reza & Li, Zhixiong, 2018. "A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 177-185.
    19. de Avila Ferreira, Tafarel & Wuillemin, Zacharie & Faulwasser, Timm & Salzmann, Christophe & Van herle, Jan & Bonvin, Dominique, 2019. "Enforcing optimal operation in solid-oxide fuel-cell systems," Energy, Elsevier, vol. 181(C), pages 281-293.
    20. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:112:y:2017:i:c:p:302-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.