IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v112y2017icp302-313.html
   My bibliography  Save this article

Robust model design for evaluation of power characteristics of the cleaner energy system

Author

Listed:
  • Garg, Akhil
  • Vijayaraghavan, Venkatesh
  • Zhang, Jian
  • Lam, Jasmine Siu Lee

Abstract

Hydrogen based fuel cell such as solid oxide fuel cell (SOFC) combines compressed hydrogen and oxygen from the air to produce electricity. Since, this technology does not emit emissions and therefore also known as cleaner energy systems. For improving the performance of the fuel cell, it is highly important to understand the effect of operating conditions on its performance. In this context, experimental studies are conducted to understand the fundamentals of the fuel cell mechanism. In view of limited resources, hence numerical studies also become crucial for design of robust models for determining and optimizing the power density based on the dynamic operating conditions. In real scenario, there exist uncertainties in precise measurement of operating conditions such as the temperature and the flow rate of hydrogen, nitrogen and oxygen. In this work, the automated neural search (ANS) approach is proposed to formulate the relationships between power density and the operating conditions. Two types of uncertainties, namely the settings of the ANS approach and in the operating conditions are considered to formulate the robust models. Optimization performed on the robust model reveals that the operating temperature of 778 °C, hydrogen and oxygen flow rate of 1 L/min are the optimum settings for achieving maximum power density of 574.2 mW/cm2.

Suggested Citation

  • Garg, Akhil & Vijayaraghavan, Venkatesh & Zhang, Jian & Lam, Jasmine Siu Lee, 2017. "Robust model design for evaluation of power characteristics of the cleaner energy system," Renewable Energy, Elsevier, vol. 112(C), pages 302-313.
  • Handle: RePEc:eee:renene:v:112:y:2017:i:c:p:302-313
    DOI: 10.1016/j.renene.2017.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    2. Choudhury, Arnab & Chandra, H. & Arora, A., 2013. "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 430-442.
    3. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    4. Brodrick, Christie-Joy & Lipman, Timothy & Farshchi, Mohammad & Dwyer, Harry & Gouse, S. William & Harris, D. Bruce & King, Foy, 2001. "Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling," Institute of Transportation Studies, Working Paper Series qt5jn024fr, Institute of Transportation Studies, UC Davis.
    5. Sadeghi, Mohsen & Chitsaz, Ata & Mahmoudi, S.M.S. & Rosen, Marc A., 2015. "Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell," Energy, Elsevier, vol. 89(C), pages 191-204.
    6. Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.
    7. Brodrick, Christie-Joy & Lipman, Timothy & Farshchi, Mohammad & Lutsey, Nicholas P. & Dwyer, Harry A. & Sperling, Dan & Gouse, Bill & Harris, D Bruce & King, Foy G, 2002. "Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks," University of California Transportation Center, Working Papers qt3dn7n50v, University of California Transportation Center.
    8. Brodrick, Christie-Joy & Lipman, Timothy & Farshchi, Mohammad & Lutsey, Nicholas & Dwyer, Harry & Sperling, Daniel & Gouse, S. William & King, Foy, 2002. "Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks," Institute of Transportation Studies, Working Paper Series qt1bt204qt, Institute of Transportation Studies, UC Davis.
    9. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2015. "Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system," Energy, Elsevier, vol. 79(C), pages 455-466.
    10. Contestabile, Marcello, 2010. "Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs," Energy Policy, Elsevier, vol. 38(10), pages 5320-5334, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangwu Ma & Hongbin Yin & Lulu Wei & Guangdong Tian & Hui Gao, 2018. "Design and Optimization of IPM Motor Considering Flux Weakening Capability and Vibration for Electric Vehicle Applications," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    2. Yang, Li & Zou, Haobo & Shang, Chao & Ye, Xiaoming & Rani, Pratibha, 2023. "Adoption of information and digital technologies for sustainable smart manufacturing systems for industry 4.0 in small, medium, and micro enterprises (SMMEs)," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    3. Junwei Liu & Vinay Kumar Gadi & Ankit Garg & Suriya Prakash Ganesan & Anasua GuhaRay, 2019. "A Novel Approach to Interpret Soil Moisture Content for Economical Monitoring of Urban Landscape," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    4. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    2. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    3. Pregelj, Boštjan & Vrečko, Darko & Petrovčič, Janko & Jovan, Vladimir & Dolanc, Gregor, 2015. "A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application," Applied Energy, Elsevier, vol. 137(C), pages 64-76.
    4. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    5. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    6. Lutsey, Nicholas & Brodrick, Christie-Joy & Lipman, Timothy, 2007. "Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks," Energy, Elsevier, vol. 32(12), pages 2428-2438.
    7. Lipman, Timothy & Shaheen, Susan, 2005. "Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation," Institute of Transportation Studies, Working Paper Series qt63d0t5wb, Institute of Transportation Studies, UC Davis.
    8. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    9. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "A comparison of three idling options in long-haul truck scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 631-647.
    10. Figliozzi, Miguel & Saenz, Jesus & Faulin, Javier, 2020. "Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization model and a real-world case study," Transport Policy, Elsevier, vol. 86(C), pages 60-68.
    11. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
    12. Hua, Jian & Wu, Yi-Hsuan & Jin, Pang-Fu, 2008. "Prospects for renewable energy for seaborne transportation—Taiwan example," Renewable Energy, Elsevier, vol. 33(5), pages 1056-1063.
    13. Lutsey, Nicholas, 2003. "Fuel Cells for Auxiliary Power in Trucks: Requirements, Benefits and Marketability," Institute of Transportation Studies, Working Paper Series qt1b1323fs, Institute of Transportation Studies, UC Davis.
    14. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Ngoc Anh Dung Do & Izabela Ewa Nielsen & Gang Chen & Peter Nielsen, 2016. "A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal," Annals of Operations Research, Springer, vol. 242(2), pages 285-301, July.
    16. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    17. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    18. Marocco, Paolo & Ferrero, Domenico & Lanzini, Andrea & Santarelli, Massimo, 2019. "Benefits from heat pipe integration in H2/H2O fed SOFC systems," Applied Energy, Elsevier, vol. 241(C), pages 472-482.
    19. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    20. Nawei Liu & Fei Xie & Zhenhong Lin & Mingzhou Jin, 2020. "Evaluating national hydrogen refueling infrastructure requirement and economic competitiveness of fuel cell electric long-haul trucks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 477-493, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:112:y:2017:i:c:p:302-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.