IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Survival models in a dynamic context: a survey"

by Pitacco, Ermanno

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Eckart Bomsdorf & Bernhard Babel, 2008. "Zur zukünftigen Entwicklung der Lebenserwartung in den G7-Ländern – Modellrechnungen bis 2050," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 61(01), pages 21-25, 01.
  2. Elisa Luciano & Elena Vigna, 2006. "Non mean reverting affne processes for stochastic mortality," Carlo Alberto Notebooks 30, Collegio Carlo Alberto.
  3. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
  4. Meyricke, Ramona & Sherris, Michael, 2013. "The determinants of mortality heterogeneity and implications for pricing annuities," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 379-387.
  5. Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010. "Longevity Risk," De Economist, Springer, vol. 158(2), pages 151-192, June.
  6. Khalaf-Allah, M. & Haberman, S. & Verrall, R., 2006. "Measuring the effect of mortality improvements on the cost of annuities," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 231-249, October.
  7. Bernhard Babel & Eckart Bomsdorf & Rafael Schmidt, 2008. "Forecasting German mortality using panel data procedures," Journal of Population Economics, Springer, vol. 21(3), pages 541-555, July.
  8. Petrichev, Konstantin & Thorp, Susan, 2008. "The private value of public pensions," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1138-1145, June.
  9. Hari, N., 2007. "Modeling mortality : Empirical studies on the effect of mortality on annuity markets," Other publications TiSEM a31eb479-4ce0-404a-b5c8-f, Tilburg University, School of Economics and Management.
  10. Debon, A. & Montes, F. & Mateu, J. & Porcu, E. & Bevilacqua, M., 2008. "Modelling residuals dependence in dynamic life tables: A geostatistical approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3128-3147, February.
  11. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
  12. Jorge Bravo, 2011. "Modelling Mortality Using Multiple Stochastic Latent Factors," CEFAGE-UE Working Papers 2011_26, University of Evora, CEFAGE-UE (Portugal).
  13. T. Gudaitis & A. Fiori Maccioni, 2014. "Optimal Individual Choice of Contribution to Second Pillar Pension System in Lithuania," Working Paper CRENoS 201402, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  14. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
  15. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
  16. Alessandro Fiori Maccioni, 2011. "A Stochastic Model for the Analysis of Demographic Risk in Pay-As-You-Go Pension Funds," Papers 1106.5081, arXiv.org.
  17. Fabio Ortiz & Mauricio Villegas & Armando Zarruck, 2012. "Tablas de mortalidad," DOCUMENTOS DE MATEMATICA Y ESTADISTICA 011472, UNIVERSIDAD EXTERNADO DE COLOMBIA.
  18. Matheus R Grasselli & Sebastiano Silla, 2009. "A policyholder's utility indifference valuation model for the guaranteed annuity option," Papers 0908.3196, arXiv.org.
  19. Colombo, Luigi & Haberman, Steven, 2005. "Optimal contributions in a defined benefit pension scheme with stochastic new entrants," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 335-354, October.
  20. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
  21. Hainaut, Donatien, 2012. "Multidimensional Lee–Carter model with switching mortality processes," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 236-246.
  22. Debón, A. & Martínez-Ruiz, F. & Montes, F., 2010. "A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 327-336, December.
  23. Jorge Bravo & Carlos Pereira da Silva, 2012. "Prospective Lifetables: Life Insurance Pricing and Hedging in a Stochastic Mortality Environment," CEFAGE-UE Working Papers 2012_01, University of Evora, CEFAGE-UE (Portugal).
  24. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
  25. Denuit, Michel, 2008. "Comonotonic approximations to quantiles of life annuity conditional expected present value," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 831-838, April.
  26. A. Bitinas & A. Fiori Maccioni, 2013. "Lithuanian pension system’s reforms following demographic and social transitions," Working Paper CRENoS 201315, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  27. Jorge Bravo, 2011. "Pricing Longevity Bonds Using Affine-Jump Diffusion Models," CEFAGE-UE Working Papers 2011_29, University of Evora, CEFAGE-UE (Portugal).
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.