IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v107y2022icp68-87.html
   My bibliography  Save this article

Mortality modeling and regression with matrix distributions

Author

Listed:
  • Albrecher, Hansjörg
  • Bladt, Martin
  • Bladt, Mogens
  • Yslas, Jorge

Abstract

In this paper we investigate the flexibility of matrix distributions for the modeling of mortality. Starting from a simple Gompertz law, we show how the introduction of matrix-valued parameters via inhomogeneous phase-type distributions can lead to reasonably accurate and relatively parsimonious models for mortality curves across the entire lifespan. A particular feature of the proposed model framework is that it allows for a more direct interpretation of the implied underlying aging process than some previous approaches. Subsequently, towards applications of the approach for multi-population mortality modeling, we introduce regression via the concept of proportional intensities, which are more flexible than proportional hazard models, and we show that the two classes are asymptotically equivalent. We illustrate how the model parameters can be estimated from data by providing an adapted EM algorithm for which the likelihood increases at each iteration. The practical feasibility and competitiveness of the proposed approach, including the right-censored case, are illustrated by several sets of mortality and survival data.

Suggested Citation

  • Albrecher, Hansjörg & Bladt, Martin & Bladt, Mogens & Yslas, Jorge, 2022. "Mortality modeling and regression with matrix distributions," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 68-87.
  • Handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:68-87
    DOI: 10.1016/j.insmatheco.2022.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722000877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    2. Zeddouk, Fadoua & Devolder, Pierre, 2020. "Mean reversion in stochastic mortality: why and how?," LIDAM Reprints ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Søren Asmussen & Patrick J. Laub & Hailiang Yang, 2019. "Phase-Type Models in Life Insurance: Fitting and Valuation of Equity-Linked Benefits," Risks, MDPI, vol. 7(1), pages 1-22, February.
    4. Dowd, Kevin & Cairns, Andrew J. G. & Blake, David, 2020. "CBDX: a workhorse mortality model from the Cairns–Blake–Dowd family," Annals of Actuarial Science, Cambridge University Press, vol. 14(2), pages 445-460, September.
    5. Sam Gutterman & Irwin Vanderhoof, 1998. "Forecasting Changes in Mortality," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(4), pages 135-138.
    6. Hansjörg Albrecher & Paul Embrechts & Damir Filipović & Glenn Harrison & Pablo Koch & Stéphane Loisel & Paolo Vanini & Joël Wagner, 2016. "Old-age provision: past, present, future," Post-Print hal-01995799, HAL.
    7. Denuit, Michel & Trufin, Julien, 2016. "From regulatory life tables to stochastic mortality projections: The exponential decline model," LIDAM Reprints ISBA 2016037, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. X. Lin & Xiaoming Liu, 2007. "Markov Aging Process and Phase-Type Law of Mortality," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 92-109.
    9. Denuit, Michel & Trufin, Julien, 2016. "From regulatory life tables to stochastic mortality projections: The exponential decline model," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 295-303.
    10. Boquan Cheng & Bruce Jones & Xiaoming Liu & Jiandong Ren, 2020. "The Mathematical Mechanism of Biological Aging," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(1), pages 73-93, September.
    11. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    12. Macdonald,Angus S. & Richards,Stephen J. & Currie,Iain D., 2018. "Modelling Mortality with Actuarial Applications," Cambridge Books, Cambridge University Press, number 9781107045415.
    13. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    14. Hansjörg Albrecher & Mogens Bladt & Jorge Yslas, 2022. "Fitting inhomogeneous phase‐type distributions to data: the univariate and the multivariate case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 44-77, March.
    15. Li, Johnny Siu-Hang & Hardy, Mary R. & Tan, Ken Seng, 2009. "Uncertainty in Mortality Forecasting: An Extension to the Classical Lee-Carter Approach," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 137-164, May.
    16. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    17. Chantal Guihenneuc-Jouyaux & Sylvia Richardson & Ira M. Longini Jr., 2000. "Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline," Biometrics, The International Biometric Society, vol. 56(3), pages 733-741, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Te Yang & Yensen Ni & Mu-Hsiang Yu & Yuhsin Chen & Paoyu Huang, 2023. "Decoding the Profitability of Insurance Products: A Novel Approach to Evaluating Non-Participating and Participating Insurance Policies," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    2. Albrecher Hansjörg & Bladt Martin & Müller Alaric J. A., 2023. "Joint lifetime modeling with matrix distributions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Albrecher Hansjörg & Bladt Martin & Müller Alaric J. A., 2023. "Joint lifetime modeling with matrix distributions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-22, January.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Lydia Dutton & Athanasios A. Pantelous & Malgorzata Seklecka, 2020. "The impact of economic growth in mortality modelling for selected OECD countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 533-550, April.
    5. Hainaut, Donatien, 2022. "A calendar year mortality model in continuous time," LIDAM Discussion Papers ISBA 2022019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    7. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    8. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    9. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    10. D’Amato, Valeria & Di Lorenzo, Emilia & Haberman, Steven & Sagoo, Pretty & Sibillo, Marilena, 2018. "De-risking strategy: Longevity spread buy-in," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 124-136.
    11. Christophette Blanchet-Scalliet & Diana Dorobantu & Yahia Salhi, 2019. "A Model-Point Approach to Indifference Pricing of Life Insurance Portfolios with Dependent Lives," Post-Print hal-01258645, HAL.
    12. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    13. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    14. Kevin Dowd & David Blake, 2022. "Projecting Mortality Rates to Extreme Old Age with the CBDX Model," Forecasting, MDPI, vol. 4(1), pages 1-11, February.
    15. Boquan Cheng & Rogemar Mamon, 2023. "A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 142-187, January.
    16. Apostolos Bozikas & Ioannis Badounas & Georgios Pitselis, 2022. "Pricing Longevity Bonds under a Credibility Framework with Limited Available Data," Risks, MDPI, vol. 10(5), pages 1-15, May.
    17. Bensusan, Harry & El Karoui, Nicole & Loisel, Stéphane & Salhi, Yahia, 2016. "Partial splitting of longevity and financial risks: The longevity nominal choosing swaptions," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 61-72.
    18. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    19. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    20. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.

    More about this item

    Keywords

    Survival analysis; Regression models; Phase-type distributions; Inhomogeneous phase-type distributions; Inhomogeneous Markov processes;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:68-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.