IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i2p176-186.html
   My bibliography  Save this article

Pricing longevity risk with the parametric bootstrap: A maximum entropy approach

Author

Listed:
  • Li, Johnny Siu-Hang

Abstract

In recent years, there has been significant development in the securitization of longevity risk. Various methods for pricing longevity risk have been proposed. In this paper we present an alternative pricing method, which is based on the maximization of the Shannon entropy in physics. Specifically, we propose implementing this pricing method with the parametric bootstrap (Brouhns et al., 2005), which is highly flexible and can be performed under different model assumptions. Through this pricing method we also quantify the impact of cohort effects and parameter uncertainty on prices of mortality-linked securities. Numerical illustrations based on longevity bonds with different maturities are provided.

Suggested Citation

  • Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:176-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00067-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaun S., 2002. "A Universal Framework for Pricing Financial and Insurance Risks," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 32(02), pages 213-234, November.
    2. F. Douglas Foster & Charles H. Whiteman, 1999. "An Application of Bayesian Option Pricing to the Soybean Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(3), pages 722-727.
    3. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    4. Haberman, Steven & Renshaw, Arthur, 2009. "On age-period-cohort parametric mortality rate projections," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 255-270, October.
    5. Richards, S. J. & Kirkby, J. G. & Currie, I. D., 2006. "The Importance of Year of Birth in Two-Dimensional Mortality Data," British Actuarial Journal, Cambridge University Press, vol. 12(01), pages 5-38, March.
    6. Kevin Dowd & David Blake & Andrew J. G. Cairns & Paul Dawson, 2006. "Survivor Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(1), pages 1-17.
    7. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751.
    8. Willets, R. C., 2004. "The Cohort Effect: Insights and Explanations," British Actuarial Journal, Cambridge University Press, vol. 10(04), pages 833-877, October.
    9. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 26(01), pages 71-92, May.
    10. Kogure, Atsuyuki & Kurachi, Yoshiyuki, 2010. "A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 162-172, February.
    11. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52.
    12. Stutzer, Michael, 1996. " A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    13. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    14. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    15. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252.
    16. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    17. Lin, Yijia & Cox, Samuel H., 2008. "Securitization of catastrophe mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 628-637, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leng, Xuan & Peng, Liang, 2016. "Inference pitfalls in Lee–Carter model for forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 58-65.
    2. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    3. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    4. Zhou, Rui & Li, Johnny Siu-Hang & Tan, Ken Seng, 2015. "Modeling longevity risk transfers as Nash bargaining problems: Methodology and insights," Economic Modelling, Elsevier, vol. 51(C), pages 460-472.
    5. Gomes-Gonçalves, Erika & Gzyl, Henryk & Mayoral, Silvia, 2015. "Two maxentropic approaches to determine the probability density of compound risk losses," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 42-53.
    6. Liu, Yanxin & Li, Johnny Siu-Hang, 2015. "The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 135-150.
    7. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:176-186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.