IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.04520.html
   My bibliography  Save this paper

A Unified Bayesian Framework for Pricing Catastrophe Bond Derivatives

Author

Listed:
  • Dixon Domfeh
  • Arpita Chatterjee
  • Matthew Dixon

Abstract

Catastrophe (CAT) bond markets are incomplete and hence carry uncertainty in instrument pricing. As such various pricing approaches have been proposed, but none treat the uncertainty in catastrophe occurrences and interest rates in a sufficiently flexible and statistically reliable way within a unifying asset pricing framework. Consequently, little is known empirically about the expected risk-premia of CAT bonds. The primary contribution of this paper is to present a unified Bayesian CAT bond pricing framework based on uncertainty quantification of catastrophes and interest rates. Our framework allows for complex beliefs about catastrophe risks to capture the distinct and common patterns in catastrophe occurrences, and when combined with stochastic interest rates, yields a unified asset pricing approach with informative expected risk premia. Specifically, using a modified collective risk model -- Dirichlet Prior-Hierarchical Bayesian Collective Risk Model (DP-HBCRM) framework -- we model catastrophe risk via a model-based clustering approach. Interest rate risk is modeled as a CIR process under the Bayesian approach. As a consequence of casting CAT pricing models into our framework, we evaluate the price and expected risk premia of various CAT bond contracts corresponding to clustering of catastrophe risk profiles. Numerical experiments show how these clusters reveal how CAT bond prices and expected risk premia relate to claim frequency and loss severity.

Suggested Citation

  • Dixon Domfeh & Arpita Chatterjee & Matthew Dixon, 2022. "A Unified Bayesian Framework for Pricing Catastrophe Bond Derivatives," Papers 2205.04520, arXiv.org.
  • Handle: RePEc:arx:papers:2205.04520
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.04520
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Froot, Kenneth A., 2001. "The market for catastrophe risk: a clinical examination," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 529-571, May.
    2. Nowak, Piotr & Romaniuk, Maciej, 2013. "Pricing and simulations of catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 18-28.
    3. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    4. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    5. Kijima, Masaaki & Muromachi, Yukio, 2008. "An extension of the Wang transform derived from Bühlmann's economic premium principle for insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 887-896, June.
    6. Shao, Jia & Papaioannou, Apostolos D. & Pantelous, Athanasios A., 2017. "Pricing and simulating catastrophe risk bonds in a Markov-dependent environment," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 68-84.
    7. Vaugirard, Victor E., 2003. "Pricing catastrophe bonds by an arbitrage approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(1), pages 119-132.
    8. Marc Gürtler & Martin Hibbeln & Christine Winkelvos, 2016. "The Impact of the Financial Crisis and Natural Catastrophes on CAT Bonds," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 579-612, September.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    11. Papachristou, Dimitris, 2011. "Statistiscal Analysis of the Spreads of Catastrophe Bonds at the Time of Issue," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 251-277, May.
    12. Jackie Li & Atsuyuki Kogure & Jia Liu, 2019. "Multivariate Risk-Neutral Pricing of Reverse Mortgages under the Bayesian Framework," Risks, MDPI, vol. 7(1), pages 1-12, January.
    13. Dhaene, Jan & Stassen, Ben & Barigou, Karim & Linders, Daniël & Chen, Ze, 2017. "Fair valuation of insurance liabilities: Merging actuarial judgement and market-consistency," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 14-27.
    14. Daron, Joseph D. & Stainforth, David A., 2014. "Assessing pricing assumptions for weather index insurance in a changing climate," LSE Research Online Documents on Economics 59154, London School of Economics and Political Science, LSE Library.
    15. Lane, Morton N., 2000. "Pricing Risk Transfer Transactions1," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 259-293, November.
    16. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    17. Mahmoud Hamada & Michael Sherris, 2003. "Contingent claim pricing using probability distortion operators: methods from insurance risk pricing and their relationship to financial theory," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 19-47.
    18. Pelsser, Antoon, 2008. "On the Applicability of the Wang Transform for Pricing Financial Risks," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 171-181, May.
    19. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    20. Markus Herrmann & Martin Hibbeln, 2021. "Seasonality in catastrophe bonds and market‐implied catastrophe arrival frequencies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 785-818, September.
    21. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    22. Jarrow, Robert A., 2010. "A simple robust model for Cat bond valuation," Finance Research Letters, Elsevier, vol. 7(2), pages 72-79, June.
    23. Alexander Braun, 2016. "Pricing in the Primary Market for Cat Bonds: New Empirical Evidence," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 811-847, December.
    24. Li, Jackie, 2014. "A quantitative comparison of simulation strategies for mortality projection," Annals of Actuarial Science, Cambridge University Press, vol. 8(2), pages 281-297, September.
    25. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    26. Samuel Cox & Hal Pedersen, 2000. "Catastrophe Risk Bonds," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 56-82.
    27. W. Keener Hughen & Carmelo Giaccotto & Po-Hsuan Hsu, 2013. "The use of Bayes factors to compare interest rate term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 369-381, February.
    28. Tang, Qihe & Yuan, Zhongyi, 2019. "Cat Bond Pricing Under A Product Probability Measure With Pot Risk Characterization," ASTIN Bulletin, Cambridge University Press, vol. 49(2), pages 457-490, May.
    29. Liang Hong & Ryan Martin, 2017. "A Flexible Bayesian Nonparametric Model for Predicting Future Insurance Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(2), pages 228-241, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorilee A. Medders & Steven L. Schwarcz, 2022. "Securitizing pandemic‐risk insurance," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 551-583, December.
    2. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2023. "How to Price Catastrophe Bonds for Sustainable Earthquake Funding? A Systematic Review of the Pricing Framework," Sustainability, MDPI, vol. 15(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    2. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Peter Carayannopoulos & Olga Kanj & M. Fabricio Perez, 2022. "Pricing dynamics in the market for catastrophe bonds," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 172-202, January.
    4. Sukono & Hafizan Juahir & Riza Andrian Ibrahim & Moch Panji Agung Saputra & Yuyun Hidayat & Igif Gimin Prihanto, 2022. "Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    5. Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
    6. Shao, Jia & Papaioannou, Apostolos D. & Pantelous, Athanasios A., 2017. "Pricing and simulating catastrophe risk bonds in a Markov-dependent environment," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 68-84.
    7. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    8. Denis-Alexandre Trottier & Van Son Lai & Anne-Sophie Charest, 2017. "CAT Bond Spreads Via HARA Utility and Nonparametric Tests," Working Papers 2017-002, Department of Research, Ipag Business School.
    9. Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.
    10. Götze, Tobias & Gürtler, Marc, 2020. "Risk transfer and moral hazard: An examination on the market for insurance-linked securities," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 758-777.
    11. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    12. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu, 2022. "Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods," Mathematics, MDPI, vol. 10(9), pages 1-17, April.
    13. Götze, Tobias & Gürtler, Marc, 2020. "Hard markets, hard times: On the inefficiency of the CAT bond market," Journal of Corporate Finance, Elsevier, vol. 62(C).
    14. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    15. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2024. "Earthquake Bond Pricing Model Involving the Inconstant Event Intensity and Maximum Strength," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    16. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2023. "How to Price Catastrophe Bonds for Sustainable Earthquake Funding? A Systematic Review of the Pricing Framework," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    17. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.
    18. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Binti Abdul Halim, 2022. "Earthquake Catastrophe Bond Pricing Using Extreme Value Theory: A Mini-Review Approach," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    19. Massimo Mariani & Paola Amoruso, 2016. "The Effectiveness of Catastrophe Bonds in Portfolio Diversification," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1760-1767.
    20. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.04520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.