IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2019y2019i7p558-584.html
   My bibliography  Save this article

A general class of distortion operators for pricing contingent claims with applications to CAT bonds

Author

Listed:
  • Frédéric Godin
  • Van Son Lai
  • Denis-Alexandre Trottier

Abstract

The current paper provides a general approach to construct distortion operators that can price financial and insurance risks. Our approach generalizes the (Wang 2000) transform and recovers multiple distortions proposed in the literature as particular cases. This approach enables designing distortions that are consistent with various pricing principles used in finance and insurance such as no-arbitrage models, equilibrium models and actuarial premium calculation principles. Such distortions allow for the incorporation of risk-aversion, distribution features (e.g. skewness and kurtosis) and other considerations that are relevant to price contingent claims. The pricing performance of multiple distortions obtained through our approach is assessed on CAT bonds data. The current paper is the first to provide evidence that jump-diffusion models are appropriate for CAT bonds pricing, and that natural disaster aversion impacts empirical prices. A simpler distortion based on a distribution mixture is finally proposed for CAT bonds pricing to facilitate the implementation.

Suggested Citation

  • Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.
  • Handle: RePEc:taf:sactxx:v:2019:y:2019:i:7:p:558-584
    DOI: 10.1080/03461238.2019.1581837
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2019.1581837
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2019.1581837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2019:y:2019:i:7:p:558-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.