IDEAS home Printed from https://ideas.repec.org/p/una/unccee/wp0307.html
   My bibliography  Save this paper

Determination of Risk Pricing Measures from Market Prices of Risk

Author

Listed:
  • Henryk Gzyl

    (Centro de Finanzas, IESA)

  • Silvia Mayoral

    (Universidad de Navarra)

Abstract

A new insurance provider or a regulatory agency may be interested in determining a risk measure consistent with observed market prices of a collection of risks. Using a relationship between distorted coherent risk measures and spectral risk measures, we provide a method for reconstruction distortion functions from the observed prices of risk. The technique is based on an appropriate application of the method on maximum entropy in the mean.

Suggested Citation

  • Henryk Gzyl & Silvia Mayoral, 2007. "Determination of Risk Pricing Measures from Market Prices of Risk," Faculty Working Papers 03/07, School of Economics and Business Administration, University of Navarra.
  • Handle: RePEc:una:unccee:wp0307
    as

    Download full text from publisher

    File URL: http://www.unav.edu/documents/10174/6546776/1217957827_Determination_of_Risk_Measures.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. Dhaene & R. J. A. Laeven & S. Vanduffel & G. Darkiewicz & M. J. Goovaerts, 2008. "Can a Coherent Risk Measure Be Too Subadditive?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 365-386, June.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
    6. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    7. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    10. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    11. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    12. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    13. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    14. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    15. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    16. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    17. Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy–Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490, July.
    18. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    19. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    20. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gzyl, Henryk & Mayoral, Silvia, 2010. "A method for determining risk aversion functions from uncertain market prices of risk," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 84-89, August.
    2. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    2. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    3. Zhu, Li & Li, Haijun, 2012. "Tail distortion risk and its asymptotic analysis," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 115-121.
    4. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    5. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    6. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    11. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    12. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-25, July.
    13. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    14. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    15. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    16. Hirbod Assa, 2015. "Optimal risk allocation in a market with non-convex preferences," Papers 1503.04460, arXiv.org.
    17. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    18. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    19. Griselda Deelstra & Michèle Vanmaele & David Vyncke, 2010. "Minimizing the Risk of a Financial Product Using a Put Option," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(4), pages 767-800, December.
    20. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:una:unccee:wp0307. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.unav.edu/web/facultad-de-ciencias-economicas-y-empresariales .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://www.unav.edu/web/facultad-de-ciencias-economicas-y-empresariales .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.