IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i3p532-541.html
   My bibliography  Save this article

A feasible natural hedging strategy for insurance companies

Author

Listed:
  • Wang, Chou-Wen
  • Huang, Hong-Chih
  • Hong, De-Chuan

Abstract

To offer a means for insurance companies to deal with longevity risk, this article investigates a natural hedging strategy and attempts to find an optimal allocation of insurance products. Unlike prior research, this proposed natural hedging model can account for both the variance and mispricing effects of longevity risk at the same time. In addition, this study employs experience mortality rates, obtained from life insurance companies, rather than population mortality data for life insurance and annuity products.

Suggested Citation

  • Wang, Chou-Wen & Huang, Hong-Chih & Hong, De-Chuan, 2013. "A feasible natural hedging strategy for insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 532-541.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:532-541
    DOI: 10.1016/j.insmatheco.2013.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000280
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    2. David Blake & Andrew Cairns & Kevin Dowd & Richard MacMinn, 2006. "Longevity Bonds: Financial Engineering, Valuation, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 647-672.
    3. Chris Wilson, 2001. "On the Scale of Global Demographic Convergence 1950-2000," Population and Development Review, The Population Council, Inc., vol. 27(1), pages 155-171.
    4. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    5. Kevin Dowd & David Blake & Andrew J. G. Cairns & Paul Dawson, 2006. "Survivor Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(1), pages 1-17.
    6. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751.
    7. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    8. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    9. Michel Denuit & Pierre Devolder & Anne-Cécile Goderniaux, 2007. "Securitization of Longevity Risk: Pricing Survivor Bonds With Wang Transform in the Lee-Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(1), pages 87-113.
    10. Melnikov, Alexander & Romaniuk, Yulia, 2006. "Evaluating the performance of Gompertz, Makeham and Lee-Carter mortality models for risk management with unit-linked contracts," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 310-329, December.
    11. Ching-Syang Jack Yue & Hong-Chih Huang, 2011. "A Study of Incidence Experience for Taiwan Life Insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 718-733, October.
    12. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    13. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    14. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    15. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    16. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    17. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497.
    18. Tsai, Jeffrey T. & Wang, Jennifer L. & Tzeng, Larry Y., 2010. "On the optimal product mix in life insurance companies using conditional value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 235-241, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    2. Petar Jevtic' & Luca Regis, 2014. "Assessing the solvency of insurance portfolios via a continuous time cohort model," Working Papers 7/2014, IMT Institute for Advanced Studies Lucca, revised Jul 2014.
    3. Lin, Tzuling & Wang, Chou-Wen & Tsai, Cary Chi-Liang, 2015. "Age-specific copula-AR-GARCH mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 110-124.
    4. Jevtić, Petar & Regis, Luca, 2015. "Assessing the solvency of insurance portfolios via a continuous-time cohort model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 36-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:532-541. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.