IDEAS home Printed from https://ideas.repec.org/p/ete/afiper/485564.html

Bayesian Poisson log-bilinear models for mortality projections with multiple populations

Author

Listed:
  • Katrien Antonio
  • Anastasios Bardoutsos
  • Wilbert Ouburg

Abstract

Life insurers, pension funds, health care providers and social security institutions face increasing expenses due to continuing improvements of mortality rates. The actuarial and demographic literature has introduced a myriad of (deterministic and stochastic) models to forecast mortality rates of single populations. This paper presents a Bayesian analysis of two related multi-population mortality models of log-bilinear type, designed for two or more populations. Using a larger set of data, multi-population mortality models allow joint modelling and projection of mortality rates by identifying characteristics shared by all subpopulations as well as sub-population specific effects on mortality. This is important when modeling and forecasting mortality of males and females, regions within a country and when dealing with index-based longevity hedges. Our first model is inspired by the two factor Lee & Carter model of Renshaw and Haberman (2003) and the common factor model of Carter and Lee (1992). The second model is the augmented common factor model of Li and Lee(2005). This paper approaches both models in a statistical way, using a Poisson distribution for the number of deaths at a certain age and in a certain time period. Moreover, we use Bayesian statistics to calibrate the models and to produce mortality forecasts. We develop the technicalities necessary for Markov Chain Monte Carlo ([MCMC]) simulations and provide software implementation (in R) for the models discussed in the paper. Key benefits of this approach are multiple. We jointly calibrate the Poisson likelihood for the number of deaths and the times series models imposed on the time dependent parameters, we enable full allowance for parameter uncertainty and we are able to handle missing data as well as small sample populations. We compare and contrast results from both models to the results obtained with a frequentist single population approach and a least squares estimation of the augmented common factor model.

Suggested Citation

  • Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
  • Handle: RePEc:ete:afiper:485564
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/retrieve/3bcbe2ef-6eac-4f79-aecc-fd057263af71
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Wong, Jackie S.T. & Forster, Jonathan J. & Smith, Peter W.F., 2018. "Bayesian mortality forecasting with overdispersion," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 206-221.
    4. Hong Li & Yang Lu, 2018. "A Bayesian non-parametric model for small population mortality," Post-Print hal-02419000, HAL.
    5. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    6. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    7. Arkadiusz Wiśniowski & James Raymer, 2025. "Multiregional Population Forecasting: A Unifying Probabilistic Approach for Modelling the Components of Change," European Journal of Population, Springer;European Association for Population Studies, vol. 41(1), pages 1-44, December.
    8. Petar Jevtić & Chengwei Qin & Hongjuan Zhou, 2023. "Multi-population mortality modeling with Lévy processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 583-609, December.
    9. Barigou, Karim & Goffard, Pierre-Olivier & Loisel, Stéphane & Salhi, Yahia, 2023. "Bayesian model averaging for mortality forecasting using leave-future-out validation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 674-690.
    10. Yaser Awad & Shaul K. Bar-Lev & Udi Makov, 2022. "A New Class of Counting Distributions Embedded in the Lee–Carter Model for Mortality Projections: A Bayesian Approach," Risks, MDPI, vol. 10(6), pages 1-17, May.
    11. Kira Henshaw & Waleed Hana & Corina Constantinescu & Dalia Khalil, 2023. "Dependence Modelling of Lifetimes in Egyptian Families," Risks, MDPI, vol. 11(1), pages 1-25, January.
    12. Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
    13. Patrizio Vanella & Ugofilippo Basellini & Berit Lange, 2020. "Assessing Excess Mortality in Times of Pandemics Based on Principal Component Analysis of Weekly Mortality Data -- The Case of COVID-19," Working Papers axbhmxrs-o0viyh9z07m, French Institute for Demographic Studies.
    14. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:afiper:485564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/AFI .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.