IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v46y2023i2d10.1007_s10203-023-00400-6.html
   My bibliography  Save this article

Multi-population mortality modeling with Lévy processes

Author

Listed:
  • Petar Jevtić

    (Arizona State University)

  • Chengwei Qin

    (Oanda Corporation)

  • Hongjuan Zhou

    (Arizona State University)

Abstract

This paper constructs a theoretical framework for multi-population mortality modeling via generalized linear models and Lévy stochastic perturbations driven by a common Brownian motion and idiosyncratic factors to capture the mortality shocks. By having Lévy stochastic perturbations, our model admits various jump types, which is increasingly important for capturing mortality shocks such as pandemics, particularly when they affect various populations differently. At the same time, the proposed model allows a novel dependence structure of multiple populations, which is essential when it comes to the development of multi-population or joint-life products in the context of mortality shocks. In our empirical investigations, the mortality experiences of male and female lives in the UK and Japan are used. Compared with pure Poisson-generalized linear models, the proposed multi-population model shows superiority in predicting future mortality rates.

Suggested Citation

  • Petar Jevtić & Chengwei Qin & Hongjuan Zhou, 2023. "Multi-population mortality modeling with Lévy processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 583-609, December.
  • Handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00400-6
    DOI: 10.1007/s10203-023-00400-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-023-00400-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-023-00400-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pitt, David & Li, Jackie & Lim, Tian Kang, 2018. "Smoothing Poisson Common Factor Model For Projecting Mortality Jointly For Both Sexes," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 509-541, May.
    2. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    3. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    4. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    5. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    6. Michael Sherris & Yajing Xu & Jonathan Ziveyi, 2020. "Cohort and value-based multi-country longevity risk management," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(7), pages 650-676, August.
    7. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    8. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    9. Renshaw, A.E. & Haberman, S. & Hatzopoulos, P., 1996. "The Modelling of Recent Mortality Trends in United Kingdom Male Assured Lives," British Actuarial Journal, Cambridge University Press, vol. 2(2), pages 449-477, June.
    10. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    11. Andrew Cairns & David Blake & Kevin Dowd, 2008. "Modelling and management of mortality risk: a review," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2008(2-3), pages 79-113.
    12. Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo & Lorenzo Trapani, 2014. "Detecting Common Longevity Trends by a Multiple Population Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 139-149.
    13. Johnny Siu-Hang Li & Wai-Sum Chan & Rui Zhou, 2017. "Semicoherent Multipopulation Mortality Modeling: The Impact on Longevity Risk Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 1025-1065, September.
    14. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    15. Linda Enroth & Domantas Jasilionis & Laszlo Németh & Bjørn Heine Strand & Insani Tanjung & Louise Sundberg & Stefan Fors & Marja Jylhä & Henrik Brønnum-Hansen, 2022. "Changes in socioeconomic differentials in old age life expectancy in four Nordic countries: the impact of educational expansion and education-specific mortality," European Journal of Ageing, Springer, vol. 19(2), pages 161-173, June.
    16. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    17. Sithole, Terry Z. & Haberman, Steven & Verrall, Richard J., 2000. "An investigation into parametric models for mortality projections, with applications to immediate annuitants' and life office pensioners' data," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 285-312, December.
    18. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    19. Linda Enroth & Domantas Jasilionis & Laszlo Németh & Bjørn Heine Strand & Insani Tanjung & Louise Sundberg & Stefan Fors & Marja Jylhä & Henrik Brønnum-Hansen, 2022. "Correction to: Changes in socioeconomic differentials in old age life expectancy in four Nordic countries: the impact of educational expansion and education-specific mortality," European Journal of Ageing, Springer, vol. 19(4), pages 1643-1644, December.
    20. Andrés Villegas & Steven Haberman, 2014. "On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application to Deprivation and Mortality in England," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 168-193.
    21. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    22. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
    23. Petar Jevtić & Luca Regis, 2021. "A Square-Root Factor-Based Multi-Population Extension of the Mortality Laws," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    24. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    25. Ahmadi, Seyed Saeed & Gaillardetz, Patrice, 2015. "Modeling mortality and pricing life annuities with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 337-350.
    26. Mayhew, Les & Harper, Gillian & Villegas, Andrés M., 2020. "An investigation into the impact of deprivation on demographic inequalities in adults," Annals of Actuarial Science, Cambridge University Press, vol. 14(2), pages 358-383, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    5. Ahmadi, Seyed Saeed & Gaillardetz, Patrice, 2015. "Modeling mortality and pricing life annuities with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 337-350.
    6. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    7. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    8. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    9. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    10. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    11. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    12. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    13. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    14. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    15. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    16. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    17. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    18. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    19. Hong Li & Yang Lu, 2018. "A Bayesian non-parametric model for small population mortality," Post-Print hal-02419000, HAL.
    20. Lin, Tzuling & Tzeng, Larry Y., 2010. "An additive stochastic model of mortality rates: An application to longevity risk in reserve evaluation," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 423-435, April.

    More about this item

    Keywords

    Multi-population mortality model; Generalized linear models; Lévy process;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00400-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.