IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i2p44-d502894.html
   My bibliography  Save this article

A Two-Population Mortality Model to Assess Longevity Basis Risk

Author

Listed:
  • Selin Özen

    (Department of Actuarial Sciences and Risk Management, Karabük University, 78050 Karabük, Turkey
    These authors contributed equally to this work.)

  • Şule Şahin

    (Department of Mathematical Sciences, Institute for Financial and Actuarial Mathematics, University of Liverpool, Liverpool L69 3BX, UK
    These authors contributed equally to this work.)

Abstract

Index-based hedging solutions are used to transfer the longevity risk to the capital markets. However, mismatches between the liability of the hedger and the hedging instrument cause longevity basis risk. Therefore, an appropriate two-population model to measure and assess longevity basis risk is required. In this paper, we aim to construct a two-population mortality model to provide an effective hedge against the basis risk. The reference population is modelled by using the Lee–Carter model with the renewal process and exponential jumps, and the dynamics of the book population are specified. The analysis based on the U.K. mortality data indicate that the proposed model for the reference population and the common age effect model for the book population provide a better fit compared to the other models considered in the paper. Different two-population models are used to investigate the impact of sampling risk on the index-based hedge, as well as to analyse the risk reduction regarding hedge effectiveness. The results show that the proposed model provides a significant risk reduction when mortality jumps and sampling risk are taken into account.

Suggested Citation

  • Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:2:p:44-:d:502894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/2/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/2/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jarner, Søren Fiig & Kryger, Esben Masotti, 2011. "Modelling Adult Mortality in Small Populations: The Saint Model," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 377-418, November.
    2. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    3. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751, September.
    4. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    5. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    6. Villegas, Andrés M. & Haberman, Steven & Kaishev, Vladimir K. & Millossovich, Pietro, 2017. "A Comparative Study Of Two-Population Models For The Assessment Of Basis Risk In Longevity Hedges," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 631-679, September.
    7. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    8. Li, Jackie, 2014. "A quantitative comparison of simulation strategies for mortality projection," Annals of Actuarial Science, Cambridge University Press, vol. 8(2), pages 281-297, September.
    9. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    10. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    11. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    12. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
    13. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    14. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    15. Rui Zhou & Yujiao Wang & Kai Kaufhold & Johnny Li & Ken Tan, 2014. "Modeling Period Effects in Multi-Population Mortality Models: Applications to Solvency II," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 150-167.
    16. Kogure Atsuyuki & Kitsukawa Kenji & Kurachi Yoshiyuki, 2009. "A Bayesian Comparison of Models for Changing Mortalities toward Evaluating Longevity Risk in Japan," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(2), pages 1-22, April.
    17. Guy Coughlan & Marwa Khalaf-Allah & Yijing Ye & Sumit Kumar & Andrew Cairns & David Blake & Kevin Dowd, 2011. "Longevity Hedging 101," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 150-176.
    18. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    19. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    20. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
    21. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corina Constantinescu & Julia Eisenberg, 2021. "Special Issue “Interplay between Financial and Actuarial Mathematics”," Risks, MDPI, vol. 9(8), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selin Ozen & c{S}ule c{S}ahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Papers 2101.06690, arXiv.org.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    5. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    7. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    8. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    9. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    10. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    11. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    12. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    13. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
    14. Uditha Balasooriya & Johnny Siu-Hang Li & Jackie Li, 2020. "The Impact of Model Uncertainty on Index-Based Longevity Hedging and Measurement of Longevity Basis Risk," Risks, MDPI, vol. 8(3), pages 1-27, August.
    15. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
    16. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    17. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    18. Kallestrup-Lamb, Malene & Søgaard Laursen, Nicolai, 2024. "Longevity hedge effectiveness using socioeconomic indices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 242-251.
    19. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    20. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:2:p:44-:d:502894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.