IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i2p320-337.html
   My bibliography  Save this article

Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data

Author

Listed:
  • Hatzopoulos, P.
  • Haberman, S.

Abstract

A new common mortality modeling structure is presented for analyzing mortality dynamics for a pool of countries, under the framework of generalized linear models (GLM). The countries are first classified by fuzzy c-means cluster analysis in order to construct the common sparse age-period model structure for the mortality experience. Next, we propose a method to create the common sex difference age-period model structure and then use this to produce the residual age-periodmodel structure for each country and sex. The time related principal components are extrapolated using dynamic linear regression (DLR) models and coherent mortality forecasts are investigated. We make use of mortality data from the “Human Mortality Database”.

Suggested Citation

  • Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:2:p:320-337
    DOI: 10.1016/j.insmatheco.2012.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871300005X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    2. Chris Wilson, 2001. "On the Scale of Global Demographic Convergence 1950-2000," Population and Development Review, The Population Council, Inc., vol. 27(1), pages 155-171.
    3. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    4. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    5. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, April.
    6. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    7. Kevin M. White, 2002. "Longevity Advances in High-Income Countries, 1955-96," Population and Development Review, The Population Council, Inc., vol. 28(1), pages 59-76.
    8. Shiro Horiuchi & John Wilmoth, 1998. "Deceleration in the age pattern of mortality at olderages," Demography, Springer;Population Association of America (PAA), vol. 35(4), pages 391-412, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    2. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    3. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    4. repec:bla:jrinsu:v:84:y:2017:i:3:p:1025-1065 is not listed on IDEAS
    5. repec:bla:jrinsu:v:84:y:2017:i:s1:p:417-437 is not listed on IDEAS
    6. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.
    7. repec:eee:insuma:v:75:y:2017:i:c:p:151-165 is not listed on IDEAS
    8. repec:bla:jrinsu:v:84:y:2017:i:s1:p:515-532 is not listed on IDEAS
    9. repec:bla:jrinsu:v:84:y:2017:i:s1:p:495-514 is not listed on IDEAS
    10. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    11. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    12. Hatzopoulos, P. & Haberman, S., 2015. "Modeling trends in cohort survival probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 162-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:2:p:320-337. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.