IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v75y2017icp151-165.html
   My bibliography  Save this article

Characterization of between-group inequality of longevity in European Union countries

Author

Listed:
  • Debón, A.
  • Chaves, L.
  • Haberman, S.
  • Villa, F.

Abstract

Comparisons of differential survival by country are useful in many domains. In the area of public policy, they help policymakers and analysts assess how much various groups benefit from public programs, such as social security and health care. In financial markets and especially for actuaries, they are important for designing annuities and life insurance products. This paper presents a method for clustering information about differential mortality by country. The approach is then used to group mortality surfaces for European Union (EU) countries. The aim of this paper is to measure between-group inequality in mortality experience in EU countries through a range of mortality indicators. Additionally, the indicators permit the characterization of each group. It is important to take into account characteristics such as sex; therefore, this study differentiates between males and females in order to detect whether their patterns and characterizations are different. It is concluded that there are clear differences in mortality between the east and west of the EU that are more important than the traditional south–north division, with a significant disadvantage for Eastern Europe, and especially for males in Baltic countries. We find that the mortality indicators have evolved in all countries in such a way that the gap between groups has been maintained, both in terms of the differences in mortality levels and variability.

Suggested Citation

  • Debón, A. & Chaves, L. & Haberman, S. & Villa, F., 2017. "Characterization of between-group inequality of longevity in European Union countries," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 151-165.
  • Handle: RePEc:eee:insuma:v:75:y:2017:i:c:p:151-165
    DOI: 10.1016/j.insmatheco.2017.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716300920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. France Meslé & Jacques Vallin, 2002. "Mortalité en Europe : la divergence Est-Ouest," Population (french edition), Institut National d'Études Démographiques (INED), vol. 57(1), pages 171-212.
    2. Ahcan, Ales & Medved, Darko & Olivieri, Annamaria & Pitacco, Ermanno, 2014. "Forecasting mortality for small populations by mixing mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 12-27.
    3. Debón, A. & Montes, F. & Puig, F., 2008. "Modelling and forecasting mortality in Spain," European Journal of Operational Research, Elsevier, vol. 189(3), pages 624-637, September.
    4. Vladimir Shkolnikov & Evgeny M. Andreev & Alexander Begun, 2003. "Gini coefficient as a life table function," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(11), pages 305-358.
    5. S. Mitra, 1978. "A short note on the taeuber paradox," Demography, Springer;Population Association of America (PAA), vol. 15(4), pages 621-623, November.
    6. France Meslé, 2004. "Mortality in Central and Eastern Europe," Demographic Research Special Collections, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 2(3), pages 45-70.
    7. Mitchell, Daniel & Brockett, Patrick & Mendoza-Arriaga, Rafael & Muthuraman, Kumar, 2013. "Modeling and forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 275-285.
    8. Yang, Sharon S. & Yue, Jack C. & Huang, Hong-Chih, 2010. "Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 254-270, February.
    9. Josse, Julie & Husson, François, 2016. "missMDA: A Package for Handling Missing Values in Multivariate Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i01).
    10. Camarda, Carlo G., 2012. "MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i01).
    11. Josse, Julie & Husson, François, 2012. "Selecting the number of components in principal component analysis using cross-validation approximations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1869-1879.
    12. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    13. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    14. Ryan D. Edwards & Shripad Tuljapurkar, 2005. "Inequality in Life Spans and a New Perspective on Mortality Convergence Across Industrialized Countries," Population and Development Review, The Population Council, Inc., vol. 31(4), pages 645-674, December.
    15. Shripad Tuljapurkar & Ryan Edwards, 2011. "Variance in death and its implications for modeling and forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(21), pages 497-526.
    16. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    17. Vladimir Canudas-Romo, 2008. "The modal age at death and the shifting mortality hypothesis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(30), pages 1179-1204.
    18. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    19. Andrés Villegas & Steven Haberman, 2014. "On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application to Deprivation and Mortality in England," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 168-193.
    20. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Patricia Carracedo & Ana Debón, 2021. "Spatiotemporal Econometrics Models for Old Age Mortality in Europe," Mathematics, MDPI, vol. 9(9), pages 1-18, May.
    4. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    5. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    6. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    4. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    5. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    6. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    7. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    8. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    9. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    10. José Manuel Aburto & Alyson van Raalte, 2018. "Lifespan Dispersion in Times of Life Expectancy Fluctuation: The Case of Central and Eastern Europe," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2071-2096, December.
    11. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    12. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    13. Jose Manuel Aburto & Jesús-Adrián Alvarez & Francisco Villavicencio & James W. Vaupel, 2019. "The threshold age of the lifetable entropy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(4), pages 83-102.
    14. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    15. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    16. Suryakant Yadav, 2021. "Progress of Inequality in Age at Death in India: Role of Adult Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 523-550, July.
    17. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    18. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    19. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    20. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:75:y:2017:i:c:p:151-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.