IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v65y2015icp156-171.html
   My bibliography  Save this article

Multivariate time series modeling, estimation and prediction of mortalities

Author

Listed:
  • Ekheden, Erland
  • Hössjer, Ola

Abstract

We introduce a mixed regression model for mortality data which can be decomposed into a deterministic trend component explained by the covariates age and calendar year, a multivariate Gaussian time series part not explained by the covariates, and binomial risk. Data can be analyzed by means of a simple logistic regression model when the multivariate Gaussian time series component is absent and there is no overdispersion. In this paper we rather allow for overdispersion and the mixed regression model is fitted to mortality data from the United States and Sweden, with the aim to provide prediction and intervals for future mortality and annuity premium, as well as smoothing historical data, using the best linear unbiased predictor. We find that the form of the Gaussian time series has a large impact on the width of the prediction intervals, and it poses some new questions on proper model selection.

Suggested Citation

  • Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
  • Handle: RePEc:eee:insuma:v:65:y:2015:i:c:p:156-171
    DOI: 10.1016/j.insmatheco.2015.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715001547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    2. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    3. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    4. Edviges Coelho & Luis C. Nunes, 2011. "Forecasting mortality in the event of a structural change," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 713-736, July.
    5. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    6. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    7. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    8. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    9. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    10. Hössjer, Ola & Eriksson, Bengt & Järnmalm, Kajsa & Ohlsson, Esbjörn, 2009. "Assessing Individual Unexplained Variation in Non-Life Insurance," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 249-273, May.
    11. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    12. Hansen, Christian B., 2007. "Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 670-694, October.
    13. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    14. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    15. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    16. Mitchell, Olivia S. & Maurer, Raimond & Hammond, Brett (ed.), 2014. "Recreating Sustainable Retirement: Resilience, Solvency, and Tail Risk," OUP Catalogue, Oxford University Press, number 9780198719243.
    17. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    18. Seiya Imoto & Sadanori Konishi, 2003. "Selection of smoothing parameters inB-spline nonparametric regression models using information criteria," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 671-687, December.
    19. Kevin M. White, 2002. "Longevity Advances in High‐Income Countries, 1955–96," Population and Development Review, The Population Council, Inc., vol. 28(1), pages 59-76, March.
    20. Andrew J. G. Cairns, 2013. "Robust Hedging of Longevity Risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 621-648, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    4. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    5. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    6. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    7. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    8. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    9. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    10. Wang, Chou-Wen & Huang, Hong-Chih & Hong, De-Chuan, 2013. "A feasible natural hedging strategy for insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 532-541.
    11. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    12. Yahia Salhi & Stéphane Loisel, 2017. "Basis risk modelling: a co-integration based approach," Post-Print hal-00746859, HAL.
    13. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    14. Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010. "Longevity Risk," De Economist, Springer, vol. 158(2), pages 151-192, June.
    15. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    16. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    17. Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
    18. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    19. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    20. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:65:y:2015:i:c:p:156-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.