IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp162-179.html
   My bibliography  Save this article

Modeling trends in cohort survival probabilities

Author

Listed:
  • Hatzopoulos, P.
  • Haberman, S.

Abstract

A new dynamic parametric model is proposed for analyzing the cohort survival function. A one-factor parameterized polynomial in age effects, complementary log–log link and multinomial cohort responses are utilized, within the generalized linear models (GLM) framework. Sparse Principal component analysis (SPCA) is then applied to cohort dependent parameter estimates and provides (marginal) estimates for a two-factor structure. Modeling the two-factor residuals in a similar way, in age–time effects, provides estimates for the three-factor age–cohort–period model. An application is presented for Sweden, Norway, England & Wales and Denmark mortality experience.

Suggested Citation

  • Hatzopoulos, P. & Haberman, S., 2015. "Modeling trends in cohort survival probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 162-179.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:162-179
    DOI: 10.1016/j.insmatheco.2015.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos Wong-Fupuy & Steven Haberman, 2004. "Projecting Mortality Trends," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 56-83.
    2. Willets, R. C., 2004. "The Cohort Effect: Insights and Explanations," British Actuarial Journal, Cambridge University Press, vol. 10(4), pages 833-877, October.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    4. Kirill F. Andreev & James W. Vaupel, 2006. "Forecasts of cohort mortality after age 50," MPIDR Working Papers WP-2006-012, Max Planck Institute for Demographic Research, Rostock, Germany.
    5. S. J. Richards, 2008. "Detecting year‐of‐birth mortality patterns with limited data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 279-298, January.
    6. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    7. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    8. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    9. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    10. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    11. Kevin M. White, 2002. "Longevity Advances in High‐Income Countries, 1955–96," Population and Development Review, The Population Council, Inc., vol. 28(1), pages 59-76, March.
    12. Shiro Horiuchi & John Wilmoth, 1998. "Deceleration in the age pattern of mortality at olderages," Demography, Springer;Population Association of America (PAA), vol. 35(4), pages 391-412, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans Oluf Hansen, 2015. "Modeling and projecting mortality. A new model of heterogeneity and selection in survivorship," Discussion Papers 15-16, University of Copenhagen. Department of Economics.
    2. Hua Chen & Yugang Ding & Ruixian Li & ShanShan Mou, 2023. "Family ties and commercial health insurance consumption in China," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(1), pages 247-265, January.
    3. Jacie Jia Liu, 2021. "A Study on Link Functions for Modelling and Forecasting Old-Age Survival Probabilities of Australia and New Zealand," Risks, MDPI, vol. 9(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    3. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    4. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    5. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    6. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    7. Gabriella Piscopo & Marina Resta, 2017. "Applying spectral biclustering to mortality data," Risks, MDPI, vol. 5(2), pages 1-13, April.
    8. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    9. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    10. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    11. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    12. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    13. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    14. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    15. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    16. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    17. F. Peters & J. P. Mackenbach & W. J. Nusselder, 2016. "Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality?," European Journal of Population, Springer;European Association for Population Studies, vol. 32(5), pages 687-702, December.
    18. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    19. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    20. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:162-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.