IDEAS home Printed from
   My bibliography  Save this article

A comparative study of parametric mortality projection models


  • Haberman, Steven
  • Renshaw, Arthur


The relative merits of different parametric models for making life expectancy and annuity value predictions at both pensioner and adult ages are investigated. This study builds on current published research and considers recent model enhancements and the extent to which these enhancements address the deficiencies that have been identified of some of the models. The England & Wales male mortality experience is used to conduct detailed comparisons at pensioner ages, having first established a common basis for comparison across all models. The model comparison is then extended to include the England & Wales female experience and both the male and female USA mortality experiences over a wider age range, encompassing also the working ages.

Suggested Citation

  • Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:35-55

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    2. Haberman, Steven & Renshaw, Arthur, 2009. "On age-period-cohort parametric mortality rate projections," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 255-270, October.
    3. Willets, R. C., 2004. "The Cohort Effect: Insights and Explanations," British Actuarial Journal, Cambridge University Press, vol. 10(04), pages 833-877, October.
    4. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310, October.
    5. Shripad Tuljapurkar & Carl Boe, "undated". "Mortality Change and Forecasting: How Much and How Little Do We Know?," Pension Research Council Working Papers 98-2, Wharton School Pension Research Council, University of Pennsylvania.
    6. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    7. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    8. Pitacco, Ermanno & Denuit, Michel & Haberman, Steven & Olivieri, Annamaria, 2009. "Modelling Longevity Dynamics for Pensions and Annuity Business," OUP Catalogue, Oxford University Press, number 9780199547272, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Haberman, Steven & Renshaw, Arthur, 2013. "Modelling and projecting mortality improvement rates using a cohort perspective," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 150-168.
    2. Raimond Maurer & Olivia S. Mitchell & Ralph Rogalla & Vasily Kartashov, 2013. "Lifecycle Portfolio Choice With Systematic Longevity Risk and Variable Investment—Linked Deferred Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 649-676, September.
    3. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    4. repec:eee:insuma:v:75:y:2017:i:c:p:117-125 is not listed on IDEAS
    5. repec:gam:jrisks:v:5:y:2017:i:3:p:42-:d:106077 is not listed on IDEAS
    6. Lin, Tzuling & Wang, Chou-Wen & Tsai, Cary Chi-Liang, 2015. "Age-specific copula-AR-GARCH mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 110-124.
    7. Mitchell, Daniel & Brockett, Patrick & Mendoza-Arriaga, Rafael & Muthuraman, Kumar, 2013. "Modeling and forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 275-285.
    8. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    9. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    10. Haberman, Steven & Renshaw, Arthur, 2012. "Parametric mortality improvement rate modelling and projecting," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 309-333.
    11. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2017. "Redistribution of longevity risk: The effect of heterogeneous mortality beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 175-188.
    12. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282,
    13. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    14. repec:taf:applec:v:49:y:2017:i:2:p:170-187 is not listed on IDEAS
    15. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    16. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    17. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:35-55. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.