IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v119y2024icp64-92.html
   My bibliography  Save this article

Stochastic mortality model with respect to mixed fractional Poisson process: Calibration and empirical analysis of long-range dependence in actuarial valuation

Author

Listed:
  • Jiang, Haoran
  • Zhang, Zhehao
  • Zhu, Xiaojun

Abstract

Recently, many studies have adopted the fractional stochastic mortality process in characterising the long-range dependence (LRD) feature of mortality dynamics, while there are still fewer appropriate non-Gaussian fractional models to describe it. We propose a stochastic mortality process driven by a mixture of Brownian motion and modified fractional Poisson process to capture the LRD of mortality rates. The survival probability under this new stochastic mortality model keeps flexibility and consistency with existing affine-form mortality models, which makes the model convenient in evaluating mortality-linked products under the market-consistent method. The formula of survival probability also considers the historical information from survival data, which enables the model to capture historical health records of lives. The LRD feature is reflected by our proposed model in the empirical analysis, which includes the calibration and prediction of survival curves based on recent generation data in Japan and the UK. Finally, the consequent empirical analysis of annuity pricing illustrates the difference of whether this feature is involved in actuarial valuation.

Suggested Citation

  • Jiang, Haoran & Zhang, Zhehao & Zhu, Xiaojun, 2024. "Stochastic mortality model with respect to mixed fractional Poisson process: Calibration and empirical analysis of long-range dependence in actuarial valuation," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 64-92.
  • Handle: RePEc:eee:insuma:v:119:y:2024:i:c:p:64-92
    DOI: 10.1016/j.insmatheco.2024.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petar Jevtić & Chengwei Qin & Hongjuan Zhou, 2023. "Multi-population mortality modeling with Lévy processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 583-609, December.
    2. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    3. Harms, Philipp & Stefanovits, David, 2019. "Affine representations of fractional processes with applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1185-1228.
    4. Giacometti, Rosella & Bertocchi, Marida & Rachev, Svetlozar T. & Fabozzi, Frank J., 2012. "A comparison of the Lee–Carter model and AR–ARCH model for forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 85-93.
    5. Jost, Céline, 2006. "Transformation formulas for fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1341-1357, October.
    6. Wang, Xiao-Tian & Zhang, Shi-Ying & Fan, Shen, 2007. "Nonhomogeneous fractional Poisson processes," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 236-241.
    7. Choudhry, Moorad, 2001. "Bond and Money Markets: Strategy, Trading, Analysis," Elsevier Monographs, Elsevier, edition 1, number 9780750646772.
    8. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    9. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    10. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    11. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    12. Araya, Héctor & Bahamonde, Natalia & Torres, Soledad & Viens, Frederi, 2019. "Donsker type theorem for fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 1-8.
    13. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    14. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    15. Peters, Gareth W. & Yan, Hongxuan & Chan, Jennifer, 2021. "Statistical features of persistence and long memory in mortality data," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 291-317, July.
    16. Olivieri, Annamaria, 2001. "Uncertainty in mortality projections: an actuarial perspective," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 231-245, October.
    17. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    18. A. R. Thatcher, 1999. "The long‐term pattern of adult mortality and the highest attained age," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 5-43.
    19. Villegas, Andrés M. & Haberman, Steven & Kaishev, Vladimir K. & Millossovich, Pietro, 2017. "A Comparative Study Of Two-Population Models For The Assessment Of Basis Risk In Longevity Hedges," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 631-679, September.
    20. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    21. Wang, Xiao-Tian & Wen, Zhi-Xiong & Zhang, Shi-Ying, 2006. "Fractional Poisson process (II)," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 143-147.
    22. Jevtić, Petar & Regis, Luca, 2015. "Assessing the solvency of insurance portfolios via a continuous-time cohort model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 36-47.
    23. Yan, Hongxuan & Peters, Gareth W. & Chan, Jennifer, 2021. "Mortality models incorporating long memory for life table estimation: a comprehensive analysis," Annals of Actuarial Science, Cambridge University Press, vol. 15(3), pages 567-604, November.
    24. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.
    25. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    26. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    4. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    5. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    6. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    7. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    8. Cupido, Kyran & Jevtić, Petar & Paez, Antonio, 2020. "Spatial patterns of mortality in the United States: A spatial filtering approach," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 28-38.
    9. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    10. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    11. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    12. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    13. Fadoua Zeddouk & Pierre Devolder, 2020. "Longevity Modelling and Pricing under a Dependent Multi-Cohort Framework," Risks, MDPI, vol. 8(4), pages 1-23, November.
    14. Chen, An & Vigna, Elena, 2017. "A unisex stochastic mortality model to comply with EU Gender Directive," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 124-136.
    15. Yang Chang & Michael Sherris, 2018. "Longevity Risk Management and the Development of a Value-Based Longevity Index," Risks, MDPI, vol. 6(1), pages 1-20, February.
    16. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    17. Stefan Tappe & Stefan Weber, 2014. "Stochastic mortality models: an infinite-dimensional approach," Finance and Stochastics, Springer, vol. 18(1), pages 209-248, January.
    18. An Chen & Elena Vigna, 2015. "A unisex stochastic mortality model to comply with EU Gender Directive," Carlo Alberto Notebooks 440, Collegio Carlo Alberto.
    19. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    20. Petar Jevtić & Luca Regis, 2021. "A Square-Root Factor-Based Multi-Population Extension of the Mortality Laws," Mathematics, MDPI, vol. 9(19), pages 1-17, September.

    More about this item

    Keywords

    Long-range dependence; Stochastic mortality modelling; Survival probability empirical analysis; Actuarial valuation;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:119:y:2024:i:c:p:64-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.