IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i2p674-690.html
   My bibliography  Save this article

Bayesian model averaging for mortality forecasting using leave-future-out validation

Author

Listed:
  • Barigou, Karim
  • Goffard, Pierre-Olivier
  • Loisel, Stéphane
  • Salhi, Yahia

Abstract

Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Various stochastic frameworks have been developed to model mortality patterns by taking into account the main stylized facts driving these patterns. However, relying on the prediction of one specific model can be too restrictive and can lead to some well-documented drawbacks, including model misspecification, parameter uncertainty, and overfitting. To address these issues we first consider mortality modeling in a Bayesian negative-binomial framework to account for overdispersion and the uncertainty about the parameter estimates in a natural and coherent way. Model averaging techniques are then considered as a response to model misspecifications. In this paper, we propose two methods based on leave-future-out validation and compare them to standard Bayesian model averaging (BMA) based on marginal likelihood. An intensive numerical study is carried out over a large range of simulation setups to compare the performances of the proposed methodologies. An illustration is then proposed on real-life mortality datasets, along with a sensitivity analysis to a Covid-type scenario. Overall, we found that both methods based on an out-of-sample criterion outperform the standard BMA approach in terms of prediction performance and robustness.

Suggested Citation

  • Barigou, Karim & Goffard, Pierre-Olivier & Loisel, Stéphane & Salhi, Yahia, 2023. "Bayesian model averaging for mortality forecasting using leave-future-out validation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 674-690.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:674-690
    DOI: 10.1016/j.ijforecast.2022.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207022000243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    4. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2016. "The impact of multiple structural changes on mortality predictions," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(7), pages 581-603, August.
    5. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    6. Guangyuan Gao & Shengwang Meng & Yanlin Shi, 2019. "Stochastic Payments per Claim Incurred," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(1), pages 11-26, January.
    7. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    8. Wong, Jackie S.T. & Forster, Jonathan J. & Smith, Peter W.F., 2018. "Bayesian mortality forecasting with overdispersion," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 206-221.
    9. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    10. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    11. Jason Hilton & Erengul Dodd & Jonathan J. Forster & Peter W. F. Smith, 2019. "Projecting UK mortality by using Bayesian generalized additive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(1), pages 29-49, January.
    12. Dickson,David C. M. & Hardy,Mary R. & Waters,Howard R., 2013. "Actuarial Mathematics for Life Contingent Risks," Cambridge Books, Cambridge University Press, number 9781107044074, October.
    13. Venter, Gary & Şahın, Şule, 2018. "Parsimonious Parameterization Of Age-Period-Cohort Models By Bayesian Shrinkage," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 89-110, January.
    14. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    15. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    16. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    17. Dickson,David C. M. & Hardy,Mary R. & Waters,Howard R., 2013. "Solutions Manual for Actuarial Mathematics for Life Contingent Risks," Cambridge Books, Cambridge University Press, number 9781107620261, February.
    18. Overstall, Antony M. & Forster, Jonathan J., 2010. "Default Bayesian model determination methods for generalised linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3269-3288, December.
    19. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    20. Iain D. Currie, 2016. "On fitting generalized linear and non-linear models of mortality," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(4), pages 356-383, April.
    21. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    22. Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
    23. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    24. Kogure, Atsuyuki & Kurachi, Yoshiyuki, 2010. "A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 162-172, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    6. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    7. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    8. Jackie Li & Atsuyuki Kogure, 2021. "Bayesian Mixture Modelling for Mortality Projection," Risks, MDPI, vol. 9(4), pages 1-12, April.
    9. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    10. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    11. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    12. Li, Hong & De Waegenaere, Anja & Melenberg, Bertrand, 2015. "The choice of sample size for mortality forecasting: A Bayesian learning approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 153-168.
    13. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    14. Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.
    15. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
    16. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    17. Salvatore Scognamiglio & Mario Marino, 2023. "Backtesting stochastic mortality models by prediction interval-based metrics," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3825-3847, August.
    18. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    19. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    20. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:674-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.