Evaluating Probabilistic Population Forecasts
Author
Abstract
Suggested Citation
DOI: https://doi.org/10.24187/ecostat.2020.520d.2033
Download full text from publisher
References listed on IDEAS
- James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
- Ross Askanazi & Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2018.
"On the Comparison of Interval Forecasts,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 953-965, November.
- Ross Askanazi & Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2018. "On the Comparison of Interval Forecasts," PIER Working Paper Archive 18-013, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Aug 2018.
- Jakub Bijak & John Bryant, 2016. "Bayesian demography 250 years after Bayes," Population Studies, Taylor & Francis Journals, vol. 70(1), pages 1-19, March.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Nico Keilman & Arve Hetland & Dinh Quang Pham, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Barigou, Karim & Goffard, Pierre-Olivier & Loisel, Stéphane & Salhi, Yahia, 2023. "Bayesian model averaging for mortality forecasting using leave-future-out validation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 674-690.
- Nathalie Blanpain, 2020. "Is the Ageing of the French Population Unavoidable?," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 65-85.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joanne Ellison & Erengul Dodd & Jonathan J. Forster, 2020. "Forecasting of cohort fertility under a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 829-856, June.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023.
"Forecasting with a panel Tobit model,"
Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," CAEPR Working Papers 2019-005, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," NBER Working Papers 26569, National Bureau of Economic Research, Inc.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2021. "Forecasting with a Panel Tobit Model," Papers 2110.14117, arXiv.org, revised Jul 2022.
- Ricardo Crisóstomo, 2021.
"Estimating real‐world probabilities: A forward‐looking behavioral framework,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
- Ricardo Cris'ostomo, 2020. "Estimating real-world probabilities: A forward-looking behavioral framework," Papers 2012.09041, arXiv.org, revised Jan 2021.
- Ricardo Crisóstomo, 2021. "Estimating real word probabilities: a forward-looking behavioral framework," CNMV Working Papers CNMV Working Papers no. 7, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- James Mitchell & Martin Weale, 2023.
"Censored density forecasts: Production and evaluation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
- James Mitchell & Martin Weale, 2021. "Censored Density Forecasts: Production and Evaluation," Working Papers 21-12R, Federal Reserve Bank of Cleveland, revised 16 Aug 2022.
- Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Malte Knüppel & Fabian Krüger, 2022.
"Forecast uncertainty, disagreement, and the linear pool,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
- Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
- Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023.
"On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2022. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," NBER Working Papers 29635, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone In?ation and Real Interest Rates," PIER Working Paper Archive 21-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
- Tomás Marinozzi, 2023. "Forecasting Inflation in Argentina: A Probabilistic Approach," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(81), pages 81-110, May.
- Marczak, Martyna & Proietti, Tommaso & Grassi, Stefano, 2018.
"A data-cleaning augmented Kalman filter for robust estimation of state space models,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 107-123.
- Marczak, Martyna & Proietti, Tommaso & Grassi, Stefano, 2015. "A data-cleaning augmented Kalman filter for robust estimation of state space models," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2015, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Martyna Marczak & Tommaso Proietti & Stefano Grassi, 2016. "A Data–Cleaning Augmented Kalman Filter for Robust Estimation of State Space Models," CEIS Research Paper 374, Tor Vergata University, CEIS, revised 31 Mar 2016.
- Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose & Robert L. Winkler, 2017. "Quantile Evaluation, Sensitivity to Bracketing, and Sharing Business Payoffs," Operations Research, INFORMS, vol. 65(3), pages 712-728, June.
- Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
- André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
- Reif Magnus, 2021.
"Macroeconomic uncertainty and forecasting macroeconomic aggregates,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
- Magnus Reif, 2018. "Macroeconomic Uncertainty and Forecasting Macroeconomic Aggregates," ifo Working Paper Series 265, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
- Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017.
"Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
- Proietti, Tommaso & Marczak, Martyna & Mazzi, Gianluigi, 2015. "EuroMInd-D: A density estimate of monthly gross domestic product for the euro area," Hohenheim Discussion Papers in Business, Economics and Social Sciences 03-2015, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CEIS Research Paper 340, Tor Vergata University, CEIS, revised 10 Apr 2015.
More about this item
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
- J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:ecosta:ecostat_2020_520d_4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Veronique Egloff (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.