IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v48y2011i3p355-367.html
   My bibliography  Save this article

Mortality density forecasts: An analysis of six stochastic mortality models

Author

Listed:
  • Cairns, Andrew J.G.
  • Blake, David
  • Dowd, Kevin
  • Coughlan, Guy D.
  • Epstein, David
  • Khalaf-Allah, Marwa

Abstract

This paper develops a framework for developing forecasts of future mortality rates. We discuss the suitability of six stochastic mortality models for forecasting future mortality and estimating the density of mortality rates at different ages. In particular, the models are assessed individually with reference to the following qualitative criteria that focus on the plausibility of their forecasts: biological reasonableness; the plausibility of predicted levels of uncertainty in forecasts at different ages; and the robustness of the forecasts relative to the sample period used to fit the model. An important, though unsurprising, conclusion is that a good fit to historical data does not guarantee sensible forecasts. We also discuss the issue of model risk, common to many modelling situations in demography and elsewhere. We find that even for those models satisfying our qualitative criteria, there are significant differences among central forecasts of mortality rates at different ages and among the distributions surrounding those central forecasts.

Suggested Citation

  • Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:3:p:355-367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00148-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    2. Edouard Debonneuil, 2010. "A simple model of mortality trends aiming at universality: Lee Carter + Cohort," Papers 1003.1802, arXiv.org.
    3. Robert McNown & Andrei Rogers, 1989. "Forecasting Mortality: A Parameterized Time Series Approach," Demography, Springer;Population Association of America (PAA), vol. 26(4), pages 645-660, November.
    4. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 36(01), pages 79-120, May.
    5. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    6. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    7. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    8. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    9. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    10. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:3:p:355-367. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.