Cost monotonicity, consistency and minimum cost spanning tree games
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
- Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Realizing efficient outcomes in cost spanning problems," Game Theory and Information 0403001, University Library of Munich, Germany.
- Gustavo Bergantiños & Leticia Lorenzo, 2021.
"Cost additive rules in minimum cost spanning tree problems with multiple sources,"
Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
- Bergantiños, Gustavo & Lorenzo, Leticia, 2019. "Cost additive rules in minimum cost spanning tree problems with multiple sources," MPRA Paper 96937, University Library of Munich, Germany.
- Dutta, Bhaskar & Mishra, Debasis, 2012.
"Minimum cost arborescences,"
Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
- Dutta, Bhaskar & Mishra, Debasis, "undated". "Minimum Cost Arborescences," Economic Research Papers 271310, University of Warwick - Department of Economics.
- Dutta, Bhaskar & Mishra, Debasis, 2009. "Minimum Cost Arborescences," The Warwick Economics Research Paper Series (TWERPS) 889, University of Warwick, Department of Economics.
- Bhaskar Dutta & Debasis Mishra, 2008. "Minimum cost arborescences," Discussion Papers 08-12, Indian Statistical Institute, Delhi.
- Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
- Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
- José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020.
"An egalitarian approach for sharing the cost of a spanning tree,"
PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
- José M Giménez-Gómez & Josep E Peris & Begoña Subiza, 2019. "An Egalitarian Approach for Sharing the Cost of a Spanning Tree," QM&ET Working Papers 19-3, University of Alicante, D. Quantitative Methods and Economic Theory.
- Giménez Gómez, José M. (José Manuel) & Peris, Josep E. & Subiza, Begoña, 2019. "An egalitarian approach for sharing the cost of a spanning tree," Working Papers 2072/376029, Universitat Rovira i Virgili, Department of Economics.
- Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2020. "Stability in shortest path problems," MPRA Paper 98504, University Library of Munich, Germany.
- Balázs Sziklai & Tamás Fleiner & Tamás Solymosi, 2014. "On the Core of Directed Acyclic Graph Games," CERS-IE WORKING PAPERS 1418, Institute of Economics, Centre for Economic and Regional Studies.
- Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
- Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
- Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018.
"Sharing sequential values in a network,"
Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
- Ruben Juarez & Chiu Yu Ko & Jingyi Xue, 2016. "Sharing Sequential Values in a Network," Economics and Statistics Working Papers 3-2017, Singapore Management University, School of Economics.
- Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007.
"A fair rule in minimum cost spanning tree problems,"
Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
- Gustavo Bergantiños & Juan Vidal-Puga, 2005. "A fair rule in minimum cost spanning tree problems," Game Theory and Information 0504001, University Library of Munich, Germany.
- Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Other publications TiSEM 7ac3a323-f736-46a6-b568-c, Tilburg University, School of Economics and Management.
- Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
- Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006.
"Obligation rules for minimum cost spanning tree situations and their monotonicity properties,"
European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
- Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Discussion Paper 2004-53, Tilburg University, Center for Economic Research.
- Trudeau, Christian & Vidal-Puga, Juan, 2020.
"Clique games: A family of games with coincidence between the nucleolus and the Shapley value,"
Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
- Christian Trudeau & Juan Vidal-Puga, 2017. "Clique games: a family of games with coincidence between the nucleolus and the Shapley value," Working Papers 1705, University of Windsor, Department of Economics.
- Trudeau, Christian & Vidal-Puga, Juan, 2018. "Clique games: a family of games with coincidence between the nucleolus and the Shapley value," MPRA Paper 95999, University Library of Munich, Germany.
- Trudeau, Christian & Vidal-Puga, Juan, 2018. "Clique games: a family of games with coincidence between the nucleolus and the Shapley value," MPRA Paper 96710, University Library of Munich, Germany.
- Trudeau, Christian & Vidal-Puga, Juan, 2017.
"On the set of extreme core allocations for minimal cost spanning tree problems,"
Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
- Christian Trudeau & Juan Vidal-Puga, 2015. "On the set of extreme core allocations for minimal cost spanning tree problems," Working Papers 1505, University of Windsor, Department of Economics.
- Bergantiños, G. & Navarro-Ramos, A., 2019.
"The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources,"
Mathematical Social Sciences, Elsevier, vol. 99(C), pages 43-48.
- Bergantiños, Gustavo & Navarro, Adriana, 2019. "The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources," MPRA Paper 91723, University Library of Munich, Germany.
- Changyong Han & Bawoo Kim & Youngsub Chun, 2024. "Demand operators and the Dutta–Kar rule for minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(1), pages 101-124, August.
- Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022.
"The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources,"
International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
- Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2018. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 91523, University Library of Munich, Germany.
- Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2019. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 91722, University Library of Munich, Germany.
- Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2019. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 97141, University Library of Munich, Germany.
- Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
- Trudeau, Christian, 2009. "Network flow problems and permutationally concave games," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 121-131, July.
- Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2010. "A note on maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 60(1), pages 82-85, July.
- Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
- R. Pablo Arribillaga & G. Bergantiños, 2022.
"Cooperative and axiomatic approaches to the knapsack allocation problem,"
Annals of Operations Research, Springer, vol. 318(2), pages 805-830, November.
- Arribillaga, Pablo & Bergantiños, Gustavo, 2019. "Cooperative and axiomatic approaches to the knapsack allocation problem," MPRA Paper 91719, University Library of Munich, Germany.
- Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2024. "Stable and weakly additive cost sharing in shortest path problems," Journal of Mathematical Economics, Elsevier, vol. 110(C).
- Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2015. "Sharing the Cost of a Path," Studies in Microeconomics, , vol. 3(1), pages 1-12, June.
- Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
- Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2009. "Maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 238-250, September.
- Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
- Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
- Liu, Siwen & Borm, Peter & Norde, Henk, 2023.
"Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability,"
Other publications TiSEM
bf366633-5301-4aad-81c8-a, Tilburg University, School of Economics and Management.
- Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Discussion Paper 2023-021, Tilburg University, Center for Economic Research.
- Juan J. Vidal-Puga & Gustavo Bergantiños, 2004.
"Defining Rules in Cost Spanning Tree Problems Through the Canonical Form,"
Working Papers
2004.97, Fondazione Eni Enrico Mattei.
- Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Defining rules in cost spanning tree problems through the canonical form," Game Theory and Information 0402004, University Library of Munich, Germany.
- Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Other publications TiSEM de0e437c-1588-469d-a2ff-a, Tilburg University, School of Economics and Management.
- Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2011. "Finding socially best spanning trees," Theory and Decision, Springer, vol. 70(4), pages 511-527, April.
- Darko Skorin-Kapov, 2018. "Social enterprise tree network games," Annals of Operations Research, Springer, vol. 268(1), pages 5-20, September.
- Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010.
"Decentralized pricing in minimum cost spanning trees,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
- Jens Leth Hougaard & Hervé Moulin & Lars Peter Østerdal, 2008. "Decentralized Pricing in Minimum Cost Spanning Trees," Discussion Papers 08-24, University of Copenhagen. Department of Economics.
- Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(2), pages 223-239, October.
- Bergantiños, Gustavo & Navarro, Adriana, 2019. "Characterization of the painting rule for multi-source minimal cost spanning tree problems," MPRA Paper 93266, University Library of Munich, Germany.
- Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
- Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023.
"An Allocation Rule for Graph Machine Scheduling Problems,"
Discussion Paper
2023-009, Tilburg University, Center for Economic Research.
- Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Other publications TiSEM 17013f33-1d65-4294-802c-b, Tilburg University, School of Economics and Management.
- Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003.
"The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations,"
Discussion Paper
2003-129, Tilburg University, Center for Economic Research.
- Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2004. "The P-value for cost sharing in minimum cost spanning tree situations," Other publications TiSEM b41d77ef-69cb-4ffa-8309-d, Tilburg University, School of Economics and Management.
- María Gómez-Rúa & Juan Vidal-Puga, 2017.
"A monotonic and merge-proof rule in minimum cost spanning tree situations,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
- Gómez-Rúa, María & Vidal-Puga, Juan, 2015. "A monotonic and merge-proof rule in minimum cost spanning tree situations," MPRA Paper 62923, University Library of Munich, Germany.
- Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016.
"Strategic sharing of a costly network,"
Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
- Penélope Hernández & Josep E. Peris & José A. Silva-Reus, 2012. "Strategic Sharing of a Costly Network," QM&ET Working Papers 12-10, University of Alicante, D. Quantitative Methods and Economic Theory.
- Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
- Thomson, William, 2024. "Cost allocation and airport problems," Mathematical Social Sciences, Elsevier, vol. 131(C), pages 17-31.
- Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
- Leticia Lorenzo & Silvia Lorenzo-Freire, 2009. "A characterization of Kruskal sharing rules for minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 107-126, March.
- Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Discussion Paper 2007-89, Tilburg University, Center for Economic Research.
- Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 695-710, April.
- Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004.
"The P-value for cost sharing in minimum,"
Theory and Decision, Springer, vol. 56(2_2), pages 47-61, February.
- Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
- Barış Çiftçi & Stef Tijs, 2009. "A vertex oriented approach to the equal remaining obligations rule for minimum cost spanning tree situations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 440-453, December.
- Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Other publications TiSEM 1b5a01d9-e7e4-43da-acf0-7, Tilburg University, School of Economics and Management.
- Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Additivity in cost spanning tree problems," Game Theory and Information 0405001, University Library of Munich, Germany.
- Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
- Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
- Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
- Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
- Yusuke Kamishiro, 2015. "On the core of a cost allocation problem under asymmetric information," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(1), pages 17-32.
- Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
- Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
- Tan, Zhibin & Zhigang, Cao & Zou, Zhengxing, 2025. "Comparative statics of minimum-cost-spanning-tree games," Games and Economic Behavior, Elsevier, vol. 151(C), pages 162-182.
- Andr'e Casajus & Yukihiko Funaki & Frank Huettner, 2025. "Balanced contributions, consistency, and value for games with externalities," Papers 2511.03145, arXiv.org.
- Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Other publications TiSEM 78d24994-1074-4329-b911-c, Tilburg University, School of Economics and Management.
Printed from https://ideas.repec.org/r/eee/gamebe/v48y2004i2p223-248.html