IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v30y2005i10p1833-1843.html
   My bibliography  Save this item

Forecasting electricity consumption in New Zealand using economic and demographic variables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
  2. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
  3. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
  4. Gang Chen & Qingchang Hu & Jin Wang & Xu Wang & Yuyu Zhu, 2023. "Machine-Learning-Based Electric Power Forecasting," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
  5. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
  6. Bašta, Milan & Helman, Karel, 2013. "Scale-specific importance of weather variables for explanation of variations of electricity consumption: The case of Prague, Czech Republic," Energy Economics, Elsevier, vol. 40(C), pages 503-514.
  7. Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
  8. Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
  9. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
  10. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
  11. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
  12. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
  13. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  14. Ruma Talukdar & Nibedita Mahanta, 2023. "Forecasting of Domestic Electricity Consumption in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 229-235, September.
  15. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
  16. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
  17. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
  18. Karin Kandananond, 2011. "Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach," Energies, MDPI, vol. 4(8), pages 1-12, August.
  19. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
  20. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
  21. Ha-Hyun Jo & Minwoo Jang & Jaehyeok Kim, 2020. "How Population Age Distribution Affects Future Electricity Demand in Korea: Applying Population Polynomial Function," Energies, MDPI, vol. 13(20), pages 1-17, October.
  22. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
  23. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
  24. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
  25. Lin, Jiang & Xu Liu, & Gang He,, 2020. "Regional electricity demand and economic transition in China," Utilities Policy, Elsevier, vol. 64(C).
  26. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
  27. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
  28. Lisha Li & Shuming Yuan & Yue Teng & Jing Shao, 2021. "A Study on Sustainable Consumption of Fuel—An Estimation Method of Aircraft," Energies, MDPI, vol. 14(22), pages 1-13, November.
  29. Swasti R. Khuntia & Jose L. Rueda & Mart A.M.M. Van der Meijden, 2018. "Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model," Energies, MDPI, vol. 11(12), pages 1-19, November.
  30. Collins, Ross D. & Selin, Noelle E. & de Weck, Olivier L. & Clark, William C., 2017. "Using inclusive wealth for policy evaluation: Application to electricity infrastructure planning in oil-exporting countries," Ecological Economics, Elsevier, vol. 133(C), pages 23-34.
  31. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
  32. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
  33. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
  34. Ismail Shah & Hasnain Iftikhar & Sajid Ali, 2020. "Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique," Forecasting, MDPI, vol. 2(2), pages 1-17, May.
  35. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
  36. Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
  37. Cho, Youngsang & Lee, Jongsu & Kim, Tai-Yoo, 2007. "The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach," Energy Policy, Elsevier, vol. 35(9), pages 4730-4738, September.
  38. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
  39. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
  40. Gvozdenac Urošević, Branka D. & Đozić, Damir J., 2021. "Testing long-term energy policy targets by means of artificial neural network," Energy, Elsevier, vol. 227(C).
  41. Huang, Yun-Hsun & Wu, Jung-Hua & Hsu, Yu-Ju, 2016. "Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty," Energy, Elsevier, vol. 116(P1), pages 1145-1157.
  42. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
  43. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
  44. Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
  45. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
  46. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
  47. Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
  48. Đozić, Damir J. & Gvozdenac Urošević, Branka D., 2019. "Application of artificial neural networks for testing long-term energy policy targets," Energy, Elsevier, vol. 174(C), pages 488-496.
  49. Satrio Mukti Wibowo & Dedi Budiman Hakim & Baba Barus & Akhmad Fauzi, 2022. "Estimation of Energy Demand in Indonesia using Artificial Neural Network," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 261-271, November.
  50. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
  51. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
  52. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
  53. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
  54. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
  55. Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
  56. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
  57. Peng Jiang & Jun Dong & Hui Huang, 2019. "Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm," Energies, MDPI, vol. 12(7), pages 1-24, April.
  58. Aly, Ebrahim A. & Managi, Shunsuke, 2018. "Energy infrastructure and their impacts on societies’ capital assets: A hybrid simulation approach to inclusive wealth," Energy Policy, Elsevier, vol. 121(C), pages 1-12.
  59. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
  60. Hamed, Mohammad M. & Ali, Hesham & Abdelal, Qasem, 2022. "Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances," Energy, Elsevier, vol. 255(C).
  61. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
  62. Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
  63. Habeebur Rahman & Iniyan Selvarasan & Jahitha Begum A, 2018. "Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach," Energies, MDPI, vol. 11(12), pages 1-21, December.
  64. Collins, Ross D. & Selin, Noelle E. & de Weck, Olivier L. & Clark, William C., 2016. "Using Inclusive Wealth for Policy Evaluation: Application to Electricity Infrastructure Planning in Oil-Exporting Countries," Working Paper Series 16-010, Harvard University, John F. Kennedy School of Government.
  65. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
  66. Ibrahim Soyler & Ercan Izgi, 2022. "Electricity Demand Forecasting of Hospital Buildings in Istanbul," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
  67. Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).
  68. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
  69. Lena Ahmadi & Eric Croiset & Ali Elkamel & Peter L. Douglas & Woramon Unbangluang & Evgueniy Entchev, 2012. "Impact of PHEVs Penetration on Ontario’s Electricity Grid and Environmental Considerations," Energies, MDPI, vol. 5(12), pages 1-19, November.
  70. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
  71. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
  72. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.