IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption

Listed author(s):
  • A. Azadeh

    ()

  • M. Saberi
  • A. Gitiforouz
Registered author(s):

    This paper introduces an integrated algorithm for forecasting electricity consumption (EL) based on fuzzy regression, time series and principal component analysis (PCA) in uncertain markets such as Iran. The algorithm is examined by mean absolute percentage error, analysis of variance (ANOVA) and Duncan Multiple Range Test. PCA is used to identify the input variables for the fuzzy regression and time series models. Monthly EL in Iran is used to show the superiority of the algorithm. Moreover, it is shown that the selected fuzzy regression model has better estimated values for total EL than time series. The algorithm provides as good results as intelligent methods. However, it is shown that the algorithm does not require utilization of preprocessing methods but genetic algorithm, artificial neural network and fuzzy inference system require preprocessing which could be a cumbersome task to deal with ambiguous data. The unique features of the proposed algorithm are three fold. First, two type of fuzzy regressions with and without preprocessed data are prescribed by the algorithm in order to minimize the bias. Second, it uses PCA approach instead of trial and error method for selecting the most important input variables. Third, ANOVA is used to statistically compare fuzzy regression and time series with actual data. Copyright Springer Science+Business Media B.V. 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s11135-011-9649-0
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Quality & Quantity.

    Volume (Year): 47 (2013)
    Issue (Month): 4 (June)
    Pages: 2163-2176

    as
    in new window

    Handle: RePEc:spr:qualqt:v:47:y:2013:i:4:p:2163-2176
    DOI: 10.1007/s11135-011-9649-0
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/economics/journal/11135

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Ya-Ling Huang & Chin-Tsai Lin, 2011. "Developing an interval forecasting method to predict undulated demand," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 513-524, April.
    2. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    3. Saab, Samer & Badr, Elie & Nasr, George, 2001. "Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon," Energy, Elsevier, vol. 26(1), pages 1-14.
    4. Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
    5. Muhammad Shahbaz & Mete Feridun, 2012. "Electricity consumption and economic growth empirical evidence from Pakistan," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(5), pages 1583-1599, August.
    6. Tanaka, Hideo & Hayashi, Isao & Watada, Junzo, 1989. "Possibilistic linear regression analysis for fuzzy data," European Journal of Operational Research, Elsevier, vol. 40(3), pages 389-396, June.
    7. Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
    8. Ching-Cheng Shen & Kun-Lin Hsieh, 2011. "Enhance the evaluation quality of project performance based on fuzzy aggregation weight effect," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(4), pages 845-857, June.
    9. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    10. Payne, James E., 2010. "A survey of the electricity consumption-growth literature," Applied Energy, Elsevier, vol. 87(3), pages 723-731, March.
    11. Ozturk, Harun Kemal & Ceylan, Halim & Canyurt, Olcay Ersel & Hepbasli, Arif, 2005. "Electricity estimation using genetic algorithm approach: a case study of Turkey," Energy, Elsevier, vol. 30(7), pages 1003-1012.
    12. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:47:y:2013:i:4:p:2163-2176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.