IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2019021.html
   My bibliography  Save this paper

FRM Financial Risk Meter

Author

Listed:
  • Mihoci, Andrija
  • Althof, Michael
  • Chen, Cathy Yi-Hsuan
  • Härdle, Wolfgang Karl

Abstract

A daily systemic risk measure is proposed accounting for links and mutual dependencies between financial institutions utilising tail event information. FRM (Financial Risk Meter) is based on Lasso quantile regression designed to capture tail event co-movements. The FRM focus lies on understanding active set data characteristics and the presentation of interdependencies in a network topology. Two FRM indices are presented, namely, FRM@Americas and FRM@Europe. The FRM indices detect systemic risk at selected areas and identifies risk factors. In practice, FRM is applied to the return time series of selected financial institutions and macroeconomic risk factors. Using FRM on a daily basis, we identify companies exhibiting extreme "co-stress", as well as "activators" of stress. With the SRM@EuroArea, we extend to the government bond asset class. FRM is a good predictor for recession probabilities, constituting the FRM-implied recession probabilities. Thereby, FRM indicates tail event behaviour in a network of financial risk factors.

Suggested Citation

  • Mihoci, Andrija & Althof, Michael & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2019. "FRM Financial Risk Meter," IRTG 1792 Discussion Papers 2019-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2019021
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230797/1/irtg1792dp2019-021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lining Yu & Wolfgang Karl Härdle & Lukas Borke & Thijs Benschop, 2017. "FRM: a Financial Risk Meter based on penalizing tail events occurrence," SFB 649 Discussion Papers SFB649DP2017-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Zhu, Xuening & Wang, Weining & Wang, Hansheng & Härdle, Wolfgang Karl, 2019. "Network quantile autoregression," Journal of Econometrics, Elsevier, vol. 212(1), pages 345-358.
    3. Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Löffler, Gunter & Raupach, Peter, 2018. "Pitfalls in the Use of Systemic Risk Measures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 269-298, February.
    5. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    6. Lombardi, Domenico & Siklos, Pierre L., 2016. "Benchmarking macroprudential policies: An initial assessment," Journal of Financial Stability, Elsevier, vol. 27(C), pages 35-49.
    7. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    8. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    9. Rochelle Edge & Nellie Liang, 2017. "New Financial Stability Governance and Central Banks," RBA Annual Conference Volume (Discontinued), in: Jonathan Hambur & John Simon (ed.),Monetary Policy and Financial Stability in a World of Low Interest Rates, Reserve Bank of Australia.
    10. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    11. Gauthier, Céline & Lehar, Alfred & Souissi, Moez, 2012. "Macroprudential capital requirements and systemic risk," Journal of Financial Intermediation, Elsevier, vol. 21(4), pages 594-618.
    12. Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
    13. Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
    14. Cont, Rama & Schaanning, Eric, 2019. "Monitoring indirect contagion," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 85-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Alisa & Trimborn, Simon & Härdle, Wolfgang Karl, 2021. "VCRIX — A volatility index for crypto-currencies," International Review of Financial Analysis, Elsevier, vol. 78(C).
    2. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang, 2021. "Financial Risk Meter based on expectiles," IRTG 1792 Discussion Papers 2021-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    4. Jacob, Daniel & Härdle, Wolfgang Karl & Lessmann, Stefan, 2019. "Group Average Treatment Effects for Observational Studies," IRTG 1792 Discussion Papers 2019-028, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenka Zbonakova & Wolfgang Karl Härdle & Weining Wang, 2016. "Time Varying Quantile Lasso," SFB 649 Discussion Papers SFB649DP2016-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
    4. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    5. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    6. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    7. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Interactions between Eurozone and US Booms and Busts: A Bayesian Panel Markov-switching VAR Model," Tinbergen Institute Discussion Papers 13-142/III, Tinbergen Institute, revised 01 Nov 2014.
    8. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    9. Jiang, Wen & Xu, Qiuhua & Zhang, Ruige, 2022. "Tail-event driven network of cryptocurrencies and conventional assets," Finance Research Letters, Elsevier, vol. 46(PB).
    10. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Francesco Ravazzolo & Philip Rothman, 2013. "Oil and U.S. GDP: A Real-Time Out-of-Sample Examination," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 449-463, March.
    12. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    13. Xu, Xiu & Wang, Weining & Shin, Yongcheol, 2020. "Dynamic Spatial Network Quantile Autoregression," IRTG 1792 Discussion Papers 2020-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Zbonakova, Lenka & Pio Monti, Ricardo & Härdle, Wolfgang Karl, 2018. "Towards the interpretation of time-varying regularization parameters in streaming penalized regression models," IRTG 1792 Discussion Papers 2018-059, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    16. Lining Yu & Wolfgang Karl Hardle & Lukas Borke & Thijs Benschop, 2020. "An AI approach to measuring financial risk," Papers 2009.13222, arXiv.org.
    17. Victor Chernozhukov & Chen Huang & Weining Wang, 2021. "Uniform Inference on High-dimensional Spatial Panel Networks," Papers 2105.07424, arXiv.org, revised Sep 2023.
    18. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-errors-adjusted Sahm Rule for Early Identification of Economic Recession," GLO Discussion Paper Series 523, Global Labor Organization (GLO).
    19. Ben Amor, Souhir & Althof, Michael & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter for emerging markets," Research in International Business and Finance, Elsevier, vol. 60(C).
    20. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Systemic Risk; Quantile Regression; Financial Markets; Risk Management; Network Dynamics; Recession;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2019021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.