IDEAS home Printed from
   My bibliography  Save this paper

Which Model for Poverty Predictions?


  • Verme, Paolo


OLS models are the predominant choice for poverty predictions in a variety of contexts such as proxy-means tests, poverty mapping or cross-survey impu- tations. This paper compares the performance of econometric and machine learning models in predicting poverty using alternative objective functions and stochastic dominance analysis based on coverage curves. It finds that the choice of an optimal model largely depends on the distribution of incomes and the poverty line. Comparing the performance of different econometric and machine learning models is therefore an important step in the process of opti- mizing poverty predictions and targeting ratios.

Suggested Citation

  • Verme, Paolo, 2020. "Which Model for Poverty Predictions?," GLO Discussion Paper Series 468, Global Labor Organization (GLO).
  • Handle: RePEc:zbw:glodps:468

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. David Coady & Margaret Grosh & John Hoddinott, 2004. "Targeting of Transfers in Developing Countries : Review of Lessons and Experience," World Bank Publications - Books, The World Bank Group, number 14902, December.
    2. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    3. Brown, Caitlin & Ravallion, Martin & van de Walle, Dominique, 2018. "A poor means test? Econometric targeting in Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 109-124.
    4. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    5. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," The World Bank Economic Review, World Bank Group, vol. 30(3), pages 475-500.
    6. Verme, Paolo & Gigliarano, Chiara, 2019. "Optimal targeting under budget constraints in a humanitarian context," World Development, Elsevier, vol. 119(C), pages 224-233.
    7. Dang, Hai-Anh & Lanjouw, Peter & Luoto, Jill & McKenzie, David, 2014. "Using repeated cross-sections to explore movements into and out of poverty," Journal of Development Economics, Elsevier, vol. 107(C), pages 112-128.
    8. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    9. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    10. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    2. Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    3. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893,
    4. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366,, revised Mar 2021.
    5. Matthew A. Cole & Robert J R Elliott & Bowen Liu, 2020. "The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 553-580, August.
    6. Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
    7. Yu, Baojun & Li, Changming & Mirza, Nawazish & Umar, Muhammad, 2022. "Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    8. Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin, & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
    9. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    10. Dang, Hai-Anh & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    11. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    12. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296,, revised Jun 2020.
    13. James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
    14. Nicolas Gavoille & Anna Zasova, 2021. "What we pay in the shadow: Labor tax evasion, minimum wage hike and employment," SSE Riga/BICEPS Research Papers 6, Baltic International Centre for Economic Policy Studies (BICEPS);Stockholm School of Economics in Riga (SSE Riga).
    15. Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
    16. Mehmet Güney Celbiş, 2021. "A machine learning approach to rural entrepreneurship," Papers in Regional Science, Wiley Blackwell, vol. 100(4), pages 1079-1104, August.
    17. Yang Yi & Le Wen & Shan He, 2022. "Partitioning for “Common but Differentiated” Precise Air Pollution Governance: A Combined Machine Learning and Spatial Econometric Approach," Energies, MDPI, vol. 15(9), pages 1-23, May.
    18. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    19. Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
    20. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.

    More about this item


    Welfare Modelling; Income Distributions; Poverty Predictions; Imputations;
    All these keywords.

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • E64 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Incomes Policy; Price Policy
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:glodps:468. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.