IDEAS home Printed from https://ideas.repec.org/p/zbw/bayism/304391.html
   My bibliography  Save this paper

Lohnt sich Microsoft 365 Copilot? Eine Potenzialanalyse für Unternehmen und Bildungseinrichtungen

Author

Listed:
  • Becker, Dominik
  • Deck, Luca
  • Feulner, Simon
  • Gutheil, Niklas
  • Schüll, Moritz
  • Decker, Stefan
  • Eymann, Torsten
  • Gimpel, Henner
  • Pippow, Andreas
  • Röglinger, Maximilian
  • Urbach, Nils

Abstract

Microsoft 365 Copilot ist ein innovatives KI-gestütztes Tool, das Unternehmen und Bildungseinrichtungen bei der Steigerung ihrer Effizienz und Produktivität unterstützen kann. Ist das sinnvoll? Wo genau liegen die Potentiale? Lohnt sich der Einsatz? Damit befasst sich diese Studie. Die Studie gibt einen Überblick zu generativen Chatbots wie Microsoft 365 Copilot und ordnet zentrale Begriffe ein. Die Analyse befasst sich mit den notwendigen Schritten vor der Implementierung, einschließlich der Beschaffung, internen Kosten-Nutzen-Abwägungen und datenschutzrechtlichen Aspekten. Im weiteren Verlauf werden die verschiedenen Anwendungen und Funktionalitäten von Microsoft 365 Copilot detailliert betrachtet, darunter Microsoft Teams, Outlook, Word, PowerPoint, Excel, Forms, Power Automate und Whiteboard. Jedes Kapitel beschreibt spezifische Features und wie diese zur Optimierung von Arbeitsabläufen beitragen können. Zudem werden Grenzen der Anwendungen aufgezeigt. Abschließend bietet die Studie fundierte Handlungssempfehlungen und praktische Hinweise zur Nutzung von Microsoft 365 Copilot, einschließlich hilfreicher Prompts für verschiedene OfficeProgramme. Diese umfassende Analyse soll Entscheidungsträgern helfen, die Vorteile und Grenzen von Microsoft 365 Copilot zu erkennen und fundierte Hahdlungsmaßnahmen abzuleiten, um die digitale Transformation ihrer Organisationen voranzutreiben. Mit dieser Studie leisten wir einen Beitrag zur Diskussion über die Integration von KI in den Arbeitsalltag und deren Auswirkungen auf die Effizienz und Zusammenarbeit in Unternehmen und Bildungseinrichtungen.

Suggested Citation

  • Becker, Dominik & Deck, Luca & Feulner, Simon & Gutheil, Niklas & Schüll, Moritz & Decker, Stefan & Eymann, Torsten & Gimpel, Henner & Pippow, Andreas & Röglinger, Maximilian & Urbach, Nils, 2024. "Lohnt sich Microsoft 365 Copilot? Eine Potenzialanalyse für Unternehmen und Bildungseinrichtungen," Bayreuth Reports on Information Systems Management 72, University of Bayreuth, Chair of Information Systems Management.
  • Handle: RePEc:zbw:bayism:304391
    DOI: 10.5281/zenodo.13859937
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/304391/1/1906008361.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5281/zenodo.13859937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gimpel, Henner & Hall, Kristina & Decker, Stefan & Eymann, Torsten & Lämmermann, Luis & Mädche, Alexander & Röglinger, Maximilian & Ruiner, Caroline & Schoch, Manfred & Schoop, Mareike & Urbach, Nils , 2023. "Unlocking the power of generative AI models and systems such as GPT-4 and ChatGPT for higher education: A guide for students and lecturers," Hohenheim Discussion Papers in Business, Economics and Social Sciences 02-2023, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    2. Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2023. "Generative AI at Work," Papers 2304.11771, arXiv.org, revised Nov 2024.
    3. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    4. Gmyrek, Pawel, & Berg, Janine, & Bescond, David,, 2023. "Generative AI and jobs a global analysis of potential effects on job quantity and quality," ILO Working Papers 995324892702676, International Labour Organization.
    5. repec:bre:wpaper:node_9794 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carvajal, Daniel & Franco, Catalina & Isaksson, Siri, 2024. "Will Artificial Intelligence Get in the Way of Achieving Gender Equality?," Discussion Paper Series in Economics 3/2024, Norwegian School of Economics, Department of Economics, revised 31 Oct 2024.
    2. Amali Matharaarachchi & Wishmitha Mendis & Kanishka Randunu & Daswin De Silva & Gihan Gamage & Harsha Moraliyage & Nishan Mills & Andrew Jennings, 2024. "Optimizing Generative AI Chatbots for Net-Zero Emissions Energy Internet-of-Things Infrastructure," Energies, MDPI, vol. 17(8), pages 1-19, April.
    3. Christian Peukert & Florian Abeillon & Jérémie Haese & Franziska Kaiser & Alexander Staub, 2024. "Strategic Behavior and AI Training Data," CESifo Working Paper Series 11099, CESifo.
    4. James Bono & Alec Xu, 2024. "Randomized Controlled Trials for Security Copilot for IT Administrators," Papers 2411.01067, arXiv.org, revised Nov 2024.
    5. Ozge Demirci & Jonas Hannane & Xinrong Zhu, 2024. "Who Is AI Replacing? The Impact of Generative AI on Online Freelancing Platforms," CESifo Working Paper Series 11276, CESifo.
    6. Daniel Goller & Christian Gschwendt & Stefan C. Wolter, 2023. ""This time it's different" Generative Artificial Intelligence and Occupational Choice," Economics of Education Working Paper Series 0209, University of Zurich, Department of Business Administration (IBW).
    7. Walkowiak, Emmanuelle, 2023. "Task-interdependencies between Generative AI and Workers," Economics Letters, Elsevier, vol. 231(C).
    8. Jason P Davis & Jian Bai Li, 2024. "Early Adoption of Generative AI by Global Business Leaders: Insights from an INSEAD Alumni Survey," Papers 2404.04543, arXiv.org.
    9. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    10. Engberg, Erik & Görg, Holger & Lodefalk, Magnus & Javed, Farrukh & Längkvist, Martin & Monteiro, Natália & Kyvik Nordås, Hildegunn & Pulito, Giuseppe & Schroeder, Sarah & Tang, Aili, 2023. "AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries," Ratio Working Papers 370, The Ratio Institute.
    11. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    12. Yang Shen, 2024. "Future jobs: analyzing the impact of artificial intelligence on employment and its mechanisms," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-33, April.
    13. Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024. "Intellectual Property and Creative Machines," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    14. Jai Vipra & Anton Korinek, 2023. "Market Concentration Implications of Foundation Models," Papers 2311.01550, arXiv.org.
    15. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    16. Alexander Cuntz & Carsten Fink & Hansueli Stamm, 2024. "Artificial Intelligence and Intellectual Property : An Economic Perspective," WIPO Economic Research Working Papers 77, World Intellectual Property Organization - Economics and Statistics Division.
    17. Berlinski, Elise & Morales, Jérémy & Sponem, Samuel, 2024. "Artificial imaginaries: Generative AIs as an advanced form of capitalism," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 99(C).
    18. Lan Chen & Yufei Ji & Xichen Yao & Hengshu Zhu, 2024. "Occupation Life Cycle," Papers 2406.15373, arXiv.org.
    19. Lilia Patrignani, 2024. "Understanding digital trade," Questioni di Economia e Finanza (Occasional Papers) 841, Bank of Italy, Economic Research and International Relations Area.
    20. Caleb Peppiatt, 2024. "The Future of Work: Inequality, Artificial Intelligence, and What Can Be Done About It. A Literature Review," Papers 2408.13300, arXiv.org.

    More about this item

    Keywords

    Microsoft Copilot; Künstliche Intelligenz; Generative KI; LLM Agent;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bayism:304391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwbayde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.