IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.08732.html
   My bibliography  Save this paper

Incentives for Digital Twins: Task-Based Productivity Enhancements with Generative AI

Author

Listed:
  • Catherine Wu
  • Arun Sundararajan

Abstract

Generative AI is a technology which depends in part on participation by humans in training and improving the automation potential. We focus on the development of an "AI twin" that could complement its creator's efforts, enabling them to produce higher-quality output in their individual style. However, AI twins could also, over time, replace individual humans. We analyze this trade-off using a principal-agent model in which agents have the opportunity to make investments into training an AI twin that lead to a lower cost of effort, a higher probability of success, or both. We propose a new framework to situate the model in which the tasks performed vary in the ease to which AI output can be improved by the human (the "editability") and also vary in the extent to which a non-expert can assess the quality of output (its "verifiability.") Our synthesis of recent empirical studies indicates that productivity gains from the use of generative AI are higher overall when task editability is higher, while non-experts enjoy greater relative productivity gains for tasks with higher verifiability. We show that during investment a strategic agent will trade off improvements in quality and ease of effort to preserve their wage bargaining power. Tasks with high verifiability and low editability are most aligned with a worker's incentives to train their twin, but for tasks where the stakes are low, this alignment is constrained by the risk of displacement. Our results suggest that sustained improvements in company-sponsored generative AI will require nuanced design of human incentives, and that public policy which encourages balancing worker returns with generative AI improvements could yield more sustained long-run productivity gains.

Suggested Citation

  • Catherine Wu & Arun Sundararajan, 2025. "Incentives for Digital Twins: Task-Based Productivity Enhancements with Generative AI," Papers 2509.08732, arXiv.org.
  • Handle: RePEc:arx:papers:2509.08732
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.08732
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.08732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.