Author
Listed:
- Faruk Alpay
- Bugra Kilictas
- Taylan Alpay
- Hamdi Alakkad
Abstract
The rapid advance of large-scale AI systems is reshaping how work is divided between people and machines. We formalise this reallocation as an iterated task-delegation map and show that--under broad, empirically grounded assumptions--the process converges to a stable idempotent equilibrium in which every task is performed by the agent (human or machine) with enduring comparative advantage. Leveraging lattice-theoretic fixed-point tools (Tarski and Banach), we (i) prove existence of at least one such equilibrium and (ii) derive mild monotonicity conditions that guarantee uniqueness. In a stylised continuous model the long-run automated share takes the closed form $x^* = \alpha / (\alpha + \beta)$, where $\alpha$ captures the pace of automation and $\beta$ the rate at which new, human-centric tasks appear; hence full automation is precluded whenever $\beta > 0$. We embed this analytic result in three complementary dynamical benchmarks--a discrete linear update, an evolutionary replicator dynamic, and a continuous Beta-distributed task spectrum--each of which converges to the same mixed equilibrium and is reproducible from the provided code-free formulas. A 2025-to-2045 simulation calibrated to current adoption rates projects automation rising from approximately 10% of work to approximately 65%, leaving a persistent one-third of tasks to humans. We interpret that residual as a new profession of workflow conductor: humans specialise in assigning, supervising and integrating AI modules rather than competing with them. Finally, we discuss implications for skill development, benchmark design and AI governance, arguing that policies which promote "centaur" human-AI teaming can steer the economy toward the welfare-maximising fixed point.
Suggested Citation
Faruk Alpay & Bugra Kilictas & Taylan Alpay & Hamdi Alakkad, 2025.
"Idempotent Equilibrium Analysis of Hybrid Workflow Allocation: A Mathematical Schema for Future Work,"
Papers
2508.01323, arXiv.org.
Handle:
RePEc:arx:papers:2508.01323
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.01323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.