IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp11737.html
   My bibliography  Save this paper

The Race for an Artificial General Intelligence: Implications for Public Policy

Author

Listed:
  • Naudé, Wim

    (RWTH Aachen University)

  • Dimitri, Nicola

    (University of Siena)

Abstract

An arms race for an artificial general intelligence (AGI) would be detrimental for and even pose an existential threat to humanity if it results in an unfriendly AGI. In this paper an all-pay contest model is developed to derive implications for public policy to avoid such an outcome. It is established that in a winner-takes all race, where players must invest in R&D, only the most competitive teams will participate. Given the difficulty of AGI the number of competing teams is unlikely ever to be very large. It is also established that the intention of teams competing in an AGI race, as well as the possibility of an intermediate prize is important in determining the quality of the eventual AGI. The possibility of an intermediate prize will raise quality of research but also the probability of finding the dominant AGI application and hence will make public control more urgent. It is recommended that the danger of an unfriendly AGI can be reduced by taxing AI and by using public procurement. This would reduce the pay-off of contestants, raise the amount of R&D needed to compete, and coordinate and incentivize co-operation, all outcomes that will help alleviate the control and political problems in AI. Future research is needed to elaborate the design of systems of public procurement of AI innovation and for appropriately adjusting the legal frameworks underpinning high-tech innovation, in particular dealing with patents created by AI.

Suggested Citation

  • Naudé, Wim & Dimitri, Nicola, 2018. "The Race for an Artificial General Intelligence: Implications for Public Policy," IZA Discussion Papers 11737, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp11737
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp11737.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Konrad, Kai A., 2009. "Strategy and Dynamics in Contests," OUP Catalogue, Oxford University Press, number 9780199549603, Decembrie.
    2. Ad. J. W. van de Gevel & Charles N. Noussair, 2013. "The Nexus between Artificial Intelligence and Economics," SpringerBriefs in Economics, Springer, edition 127, number 978-3-642-33648-5, March.
    3. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    4. James Bessen, 2018. "AI and Jobs: the role of demand," NBER Working Papers 24235, National Bureau of Economic Research, Inc.
    5. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    6. Kydd,Andrew H., 2015. "International Relations Theory," Cambridge Books, Cambridge University Press, number 9781107027350, November.
    7. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    8. Anton Korinek & Joseph E. Stiglitz, 2018. "Artificial Intelligence and Its Implications for Income Distribution and Unemployment," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 349-390, National Bureau of Economic Research, Inc.
    9. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    10. Kydd,Andrew H., 2015. "International Relations Theory," Cambridge Books, Cambridge University Press, number 9781107694231, November.
    11. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    12. Trajtenberg, Manuel, 2018. "AI as the next GPT: a Political-Economy Perspective," CEPR Discussion Papers 12721, C.E.P.R. Discussion Papers.
    13. Nick Bostrom, 2017. "Strategic Implications of Openness in AI Development," Global Policy, London School of Economics and Political Science, vol. 8(2), pages 135-148, May.
    14. Joseph E. Stiglitz & G. Frank Mathewson (ed.), 1986. "New Developments in the Analysis of Market Structure," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262690934, December.
    15. Michael Webb & Nick Short & Nicholas Bloom & Josh Lerner, 2018. "Some Facts of High-Tech Patenting," NBER Working Papers 24793, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Neufville, Robert & Baum, Seth D., 2021. "Collective action on artificial intelligence: A primer and review," Technology in Society, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gries, Thomas & Naude, Wim, 2018. "Artificial intelligence, jobs, inequality and productivity: Does aggregate demand matter?," MERIT Working Papers 2018-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    2. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    4. Naudé, Wim & Dimitri, Nicola, 2021. "Public Procurement and Innovation for Human-Centered Artificial Intelligence," IZA Discussion Papers 14021, Institute of Labor Economics (IZA).
    5. Bernardo S Buarque & Ronald B Davies & Ryan M Hynes & Dieter F Kogler, 2020. "OK Computer: the creation and integration of AI in Europe," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 175-192.
    6. Filippo Bertani & Marco Raberto & Andrea Teglio, 2020. "The productivity and unemployment effects of the digital transformation: an empirical and modelling assessment," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 329-355, November.
    7. Wim Naudé, 2019. "New Technology, Entrepreneurship and the Revival of Manufacturing in Africa: Opportunities for Youth and Women?," Working Papers idrcdpru4ir, University of Cape Town, Development Policy Research Unit.
    8. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    10. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    11. Colombo, Emilio & Mercorio, Fabio & Mezzanzanica, Mario, 2019. "AI meets labor market: Exploring the link between automation and skills," Information Economics and Policy, Elsevier, vol. 47(C), pages 27-37.
    12. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    13. Yining Zhang & Zhong Wu, 2021. "Intelligence and Green Total Factor Productivity Based on China’s Province-Level Manufacturing Data," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    14. Cebreros Alfonso & Heffner-Rodríguez Aldo & Livas René & Puggioni Daniela, 2020. "Automation Technologies and Employment at Risk: The Case of Mexico," Working Papers 2020-04, Banco de México.
    15. Nieddu, Marcello & Bertani, Filippo & Ponta, Linda, 2021. "Sustainability transition and digital trasformation: an agent-based perspective," MPRA Paper 106943, University Library of Munich, Germany.
    16. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    17. Domini, Giacomo & Grazzi, Marco & Moschella, Daniele & Treibich, Tania, 2021. "Threats and opportunities in the digital era: Automation spikes and employment dynamics," Research Policy, Elsevier, vol. 50(7).
    18. Ufuk Akcigit & Sina T. Ates, 2021. "Ten Facts on Declining Business Dynamism and Lessons from Endogenous Growth Theory," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 257-298, January.
    19. Mutascu, Mihai, 2021. "Artificial intelligence and unemployment: New insights," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 653-667.
    20. Nazareno, Luísa & Schiff, Daniel S., 2021. "The impact of automation and artificial intelligence on worker well-being," Technology in Society, Elsevier, vol. 67(C).

    More about this item

    Keywords

    artificial intelligence; innovation; technology; public policy;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration
    • H57 - Public Economics - - National Government Expenditures and Related Policies - - - Procurement

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp11737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.