IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.22440.html
   My bibliography  Save this paper

From Model Design to Organizational Design: Complexity Redistribution and Trade-Offs in Generative AI

Author

Listed:
  • Sharique Hasan
  • Alexander Oettl
  • Sampsa Samila

Abstract

This paper introduces the Generality-Accuracy-Simplicity (GAS) framework to analyze how large language models (LLMs) are reshaping organizations and competitive strategy. We argue that viewing AI as a simple reduction in input costs overlooks two critical dynamics: (a) the inherent trade-offs among generality, accuracy, and simplicity, and (b) the redistribution of complexity across stakeholders. While LLMs appear to defy the traditional trade-off by offering high generality and accuracy through simple interfaces, this user-facing simplicity masks a significant shift of complexity to infrastructure, compliance, and specialized personnel. The GAS trade-off, therefore, does not disappear but is relocated from the user to the organization, creating new managerial challenges, particularly around accuracy in high-stakes applications. We contend that competitive advantage no longer stems from mere AI adoption, but from mastering this redistributed complexity through the design of abstraction layers, workflow alignment, and complementary expertise. This study advances AI strategy by clarifying how scalable cognition relocates complexity and redefines the conditions for technology integration.

Suggested Citation

  • Sharique Hasan & Alexander Oettl & Sampsa Samila, 2025. "From Model Design to Organizational Design: Complexity Redistribution and Trade-Offs in Generative AI," Papers 2506.22440, arXiv.org.
  • Handle: RePEc:arx:papers:2506.22440
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.22440
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.