IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.22440.html
   My bibliography  Save this paper

From Model Design to Organizational Design: Complexity Redistribution and Trade-Offs in Generative AI

Author

Listed:
  • Sharique Hasan
  • Alexander Oettl
  • Sampsa Samila

Abstract

This paper introduces the Generality-Accuracy-Simplicity (GAS) framework to analyze how large language models (LLMs) are reshaping organizations and competitive strategy. We argue that viewing AI as a simple reduction in input costs overlooks two critical dynamics: (a) the inherent trade-offs among generality, accuracy, and simplicity, and (b) the redistribution of complexity across stakeholders. While LLMs appear to defy the traditional trade-off by offering high generality and accuracy through simple interfaces, this user-facing simplicity masks a significant shift of complexity to infrastructure, compliance, and specialized personnel. The GAS trade-off, therefore, does not disappear but is relocated from the user to the organization, creating new managerial challenges, particularly around accuracy in high-stakes applications. We contend that competitive advantage no longer stems from mere AI adoption, but from mastering this redistributed complexity through the design of abstraction layers, workflow alignment, and complementary expertise. This study advances AI strategy by clarifying how scalable cognition relocates complexity and redefines the conditions for technology integration.

Suggested Citation

  • Sharique Hasan & Alexander Oettl & Sampsa Samila, 2025. "From Model Design to Organizational Design: Complexity Redistribution and Trade-Offs in Generative AI," Papers 2506.22440, arXiv.org.
  • Handle: RePEc:arx:papers:2506.22440
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.22440
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2025. "Generative AI at Work," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 140(2), pages 889-942.
    2. Shun Yiu & Rob Seamans & Manav Raj & Ted Liu, 2024. "Strategic Responses to Technological Change: Evidence from Online Labor Markets," Papers 2403.15262, arXiv.org, revised May 2025.
    3. Anders Humlum & Emilie Vestergaard, 2025. "Large Language Models, Small Labor Market Effects," NBER Working Papers 33777, National Bureau of Economic Research, Inc.
    4. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    5. Frank Nagle & Florenta Teodoridis, 2020. "Jack of all trades and master of knowledge: The role of diversification in new distant knowledge integration," Strategic Management Journal, Wiley Blackwell, vol. 41(1), pages 55-85, January.
    6. Fabrizio Dell'Acqua & Charles Ayoubi & Hila Lifshitz & Raffaella Sadun & Ethan Mollick & Lilach Mollick & Yi Han & Jeff Goldman & Hari Nair & Stewart Taub & Karim Lakhani, 2025. "The Cybernetic Teammate: A Field Experiment on Generative AI Reshaping Teamwork and Expertise," NBER Working Papers 33641, National Bureau of Economic Research, Inc.
    7. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    8. Kaushik Sinha & Olivier L. de Weck, 2016. "Empirical Validation of Structural Complexity Metric and Complexity Management for Engineering Systems," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 193-206, May.
    9. Alekseeva, Liudmila & Azar, José & Giné, Mireia & Samila, Sampsa & Taska, Bledi, 2021. "The demand for AI skills in the labor market," Labour Economics, Elsevier, vol. 71(C).
    10. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Introduction to "The Economics of Artificial Intelligence: An Agenda"," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 1-19, National Bureau of Economic Research, Inc.
    11. Enrique Ide & Eduard Talamas, 2023. "Artificial Intelligence in the Knowledge Economy," Papers 2312.05481, arXiv.org, revised May 2025.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    2. Flavio Calvino & Luca Fontanelli, 2025. "Decoding AI: Nine facts about how firms use artificial intelligence in France," LEM Papers Series 2025/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    4. Carvajal, Daniel & Franco, Catalina & Isaksson, Siri, 2024. "Will Artificial Intelligence Get in the Way of Achieving Gender Equality?," Discussion Paper Series in Economics 3/2024, Norwegian School of Economics, Department of Economics, revised 28 Apr 2025.
    5. Leonardo Banh & Gero Strobel, 2023. "Generative artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-17, December.
    6. Carlo Drago & Alberto Costantiello & Marco Savorgnan & Angelo Leogrande, 2025. "Macroeconomic and Labor Market Drivers of AI Adoption in Europe: A Machine Learning and Panel Data Approach," Economies, MDPI, vol. 13(8), pages 1-62, August.
    7. Amali Matharaarachchi & Wishmitha Mendis & Kanishka Randunu & Daswin De Silva & Gihan Gamage & Harsha Moraliyage & Nishan Mills & Andrew Jennings, 2024. "Optimizing Generative AI Chatbots for Net-Zero Emissions Energy Internet-of-Things Infrastructure," Energies, MDPI, vol. 17(8), pages 1-19, April.
    8. Carlo Drago & Alberto Costantiello & Marco Savorgnan & Angelo Leogrande, 2025. "Driving AI Adoption in the EU: A Quantitative Analysis of Macroeconomic Influences," Working Papers hal-05102974, HAL.
    9. Becker, Dominik & Deck, Luca & Feulner, Simon & Gutheil, Niklas & Schüll, Moritz & Decker, Stefan & Eymann, Torsten & Gimpel, Henner & Pippow, Andreas & Röglinger, Maximilian & Urbach, Nils, 2024. "Lohnt sich Microsoft 365 Copilot? Eine Potenzialanalyse für Unternehmen und Bildungseinrichtungen," Bayreuth Reports on Information Systems Management 72, University of Bayreuth, Chair of Information Systems Management.
    10. Pouliakas, Konstantinos & Santangelo, Giulia, 2025. "Are Artificial Intelligence (AI) Skills a Reward or a Gamble? Deconstructing the AI Wage Premium in Europe," IZA Discussion Papers 17607, Institute of Labor Economics (IZA).
    11. Christian Peukert & Florian Abeillon & Jérémie Haese & Franziska Kaiser & Alexander Staub, 2024. "Strategic Behavior and AI Training Data," CESifo Working Paper Series 11099, CESifo.
    12. Raphael Auer & David Köpfer & Josef Sveda, 2024. "The rise of generative AI: modelling exposure, substitution and inequality effects on the US labour market," BIS Working Papers 1207, Bank for International Settlements.
    13. Piyush Gulati & Arianna Marchetti & Phanish Puranam & Victoria Sevcenko, 2025. "Generative AI Adoption and Higher Order Skills," Papers 2503.09212, arXiv.org, revised Jun 2025.
    14. Fontanelli, Luca & Guerini, Mattia & Miniaci, Raffaele & Secchi, Angelo, "undated". "Predictive AI and productivity growth dynamics: evidence from French firms," FEEM Working Papers 355806, Fondazione Eni Enrico Mattei (FEEM).
    15. Ramaul, Laavanya & Ritala, Paavo & Ruokonen, Mika, 2024. "Creational and conversational AI affordances: How the new breed of chatbots is revolutionizing knowledge industries," Business Horizons, Elsevier, vol. 67(5), pages 615-627.
    16. Böhm, Michael Johannes & Etheridge, Ben & Irastorza-Fadrique, Aitor, 2025. "The Impact of Labour Demand Shocks when Occupational Labour Supplies are Heterogeneous," IZA Discussion Papers 17851, Institute of Labor Economics (IZA).
    17. James Bono & Alec Xu, 2024. "Randomized Controlled Trials for Security Copilot for IT Administrators," Papers 2411.01067, arXiv.org, revised Nov 2024.
    18. Pablo Casas & Concepción Román, 2024. "The impact of artificial intelligence in the early retirement decision," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 51(3), pages 583-618, August.
    19. Stefania Albanesi & António Dias da Silva & Juan F Jimeno & Ana Lamo & Alena Wabitsch, 2025. "New technologies and jobs in Europe," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 40(121), pages 71-139.
    20. L. Elisa Celis & Lingxiao Huang & Nisheeth K. Vishnoi, 2025. "A Mathematical Framework for AI-Human Integration in Work," Papers 2505.23432, arXiv.org, revised May 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.