IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-05102974.html

Driving AI Adoption in the EU: A Quantitative Analysis of Macroeconomic Influences

Author

Listed:
  • Carlo Drago

    (UNICUSANO - University Niccolò Cusano = Università Niccoló Cusano)

  • Alberto Costantiello

    (LUM - Università LUM Giuseppe Degennaro = University Giuseppe Degennaro)

  • Marco Savorgnan

  • Angelo Leogrande

    (LUM - Università LUM Giuseppe Degennaro = University Giuseppe Degennaro)

Abstract

This article investigates macroeconomic factors that support the adoption of Artificial Intelligence (AI) technologies by large European Union (EU) enterprises. In this analysis, panel data regression is combined with machine learning to investigate how macroeconomic variables like health spending, domestic credit, exports, gross capital formation, and inflation, along with health spending and trade openness, influence the share of enterprises that adopt at least one type of AI technology (ALOAI). The results of the estimations-based on fixed and random effects models with 151 observations-show that health spending, inflation, and trade and GDP per capita have positively significant associations with adoption, with significant negative correlations visible with and among domestic credit, exports, and gross capital formation. In adjunct to this, the regression of machine learning models (KNN, Boosting, Random Forest) is benchmarked with MSE, RMSE, MAE, MAPE, and R² measures with KNN performing perfectly on all measures, although with some concerns regarding data overfitting. Furthermore, cluster analysis (Hierarchical, Density-Based, Neighborhood-Based) identifies hidden EU country groups with comparable macroeconomic variables and comparable ALOAI. Notably, those with characteristics of high integration in international trade, access to credit, and strong GDP per capita indicate large ALOAI levels, whereas those with macroeconomic volatility and under-investment in innovation trail behind. These findings suggest that securing the adoption of AI is not merely about finance and infrastructure but also about policy alignment and institutional preparedness. This work provides evidence-driven policy advice by presenting an integrated data-driven analytical framework to comprehend and manage AI diffusion within EU industry sectors.

Suggested Citation

  • Carlo Drago & Alberto Costantiello & Marco Savorgnan & Angelo Leogrande, 2025. "Driving AI Adoption in the EU: A Quantitative Analysis of Macroeconomic Influences," Working Papers hal-05102974, HAL.
  • Handle: RePEc:hal:wpaper:hal-05102974
    Note: View the original document on HAL open archive server: https://hal.science/hal-05102974v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05102974v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-05102974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.