IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa11p942.html
   My bibliography  Save this paper

Local weighting or the necessity of flexibility

Author

Listed:
  • Jesus Mur

    ()

  • Antonio Paez

    ()

Abstract

The local estimation algorithms are well-known techniques in the current spatial econometric literature. The Geographically Weighted Regressions are very popular to estimate, locally, static models, whereas the SALE or the Zoom approaches are useful solutions in the case of dynamic models. These techniques are well founded from a methodological point of view and present interesting properties. However, Farber and Paez (2008) detect some inconsistencies in the behavior of some of these algorithms that claim for a further analysis. The point that we want to study in this paper refers to the role of the bandwith. This measure defines how many neighbors will be used in the estimation of the local parameters corresponding to each observation. The cross-validation is the most popular criteria to fix the bandwith, although there are several other criteria in the literature. We think that there is a basic problem with this approach. The objective of these algorithms is to relax the restriction of homogeneity of the parameters of the model allowing for local peculiarities; however the definition of local neighborhood is the same. It does not matter if the observation corresponds to an isolated and poorly communicated region or it belongs to a central and highly connected point. According to our view, this is a very restrictive decision that should be avoided. Specifically, we discuss the procedure of specifying the sequence of local weighting matrices that will be used in the analysis. Our purpose is to achieve that these matrices also reflect the local surrounding of each observation. We examine two different strategies in order to construct the local weighting matrices. The first is a parametric approach which involves the J test, as presented by Kelejian (2008), and the second is a nonparametric approach that uses the guidance of the symbolic entropy measures. The first part of the paper presents the overall problem, including a review of the literature; we discuss the solutions in the second part and the third part consists of a Monte Carlo simulation.

Suggested Citation

  • Jesus Mur & Antonio Paez, 2011. "Local weighting or the necessity of flexibility," ERSA conference papers ersa11p942, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa11p942
    as

    Download full text from publisher

    File URL: http://www-sre.wu.ac.at/ersa/ersaconfs/ersa11/e110830aFinal00942.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Esteban Fernández-Vázquez & Matías Mayor-Fernández & Jorge Rodríguez-Vález, 2009. "Estimating Spatial Autoregressive Models by GME-GCE Techniques," International Regional Science Review, , vol. 32(2), pages 148-172, April.
    2. P Bodson & D Peeters, 1975. "Estimation of the Coefficients of a Linear Regression in the Presence of Spatial Autocorrelation. An Application to a Belgian Labour-Demand Function," Environment and Planning A, , vol. 7(4), pages 455-472, June.
    3. Henk Folmer & Johan Oud, 2008. "How to get rid of W: a latent variables approach to modelling spatially lagged variables," Environment and Planning A, Pion Ltd, London, vol. 40(10), pages 2526-2538, October.
    4. Conley, Timothy G. & Molinari, Francesca, 2007. "Spatial correlation robust inference with errors in location or distance," Journal of Econometrics, Elsevier, vol. 140(1), pages 76-96, September.
    5. Luisa Corrado & Bernard Fingleton, 2012. "Where Is The Economics In Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 210-239, May.
    6. Olivier Parent & James Lesage, 2005. "Bayesian Model Averaging for Spatial Econometric Models," Post-Print hal-00375489, HAL.
    7. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds," Environment and Planning A, , vol. 27(3), pages 447-469, March.
    8. Jesús Mur & Jean Paelinck, 2011. "Deriving the W-matrix via p-median complete correlation analysis of residuals," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(2), pages 253-267, October.
    9. Peter Burridge, 2012. "Improving the J Test in the SARAR Model by Likelihood-based Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 75-107, March.
    10. Raffaele Paci & Stefano Usai, 2009. "Knowledge flows across European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(3), pages 669-690, September.
    11. Paelinck, J., 1978. "Spatial econometrics," Economics Letters, Elsevier, vol. 1(1), pages 59-63.
    12. S Openshaw, 1977. "Optimal Zoning Systems for Spatial Interaction Models," Environment and Planning A, , vol. 9(2), pages 169-184, February.
    13. Peter Burridge & Bernard Fingleton, 2010. "Bootstrap Inference in Spatial Econometrics: the J-test," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 93-119.
    14. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    15. J. Barkley Rosser, 2009. "Introduction," Chapters,in: Handbook of Research on Complexity, chapter 1 Edward Elgar Publishing.
    16. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    17. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa11p942. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: http://www.ersa.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.