IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v8y2013i4p469-497.html

Detecting Dependence Between Spatial Processes

Author

Listed:
  • Marcos Herrera
  • Manuel Ruiz
  • Jesús Mur

Abstract

Testing the assumption of independence between variables is a crucial aspect of spatial data analysis. However, the literature is limited and somewhat confusing. To our knowledge, we can mention only the bivariate generalization of Moran's statistic. This test suffers from several restrictions: it is applicable only to pairs of variables, a weighting matrix and the assumption of linearity are needed; the null hypothesis of the test is not totally clear. Given these limitations, we develop a new non-parametric test, Υ( m ), based on symbolic dynamics with better properties. We show that the Υ( m ) test can be extended to a multivariate framework, it is robust to departures from linearity, it does not need a weighting matrix and can be adapted to different specifications of the null. The test is consistent, computationally simple and with good size and power, as shown by a Monte Carlo experiment. An application to the case of the productivity of the manufacturing sector in the Ebro Valley illustrates our approach.

Suggested Citation

  • Marcos Herrera & Manuel Ruiz & Jesús Mur, 2013. "Detecting Dependence Between Spatial Processes," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 469-497, February.
  • Handle: RePEc:taf:specan:v:8:y:2013:i:4:p:469-497
    DOI: 10.1080/17421772.2013.835437
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2013.835437
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2013.835437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herrera Gómez, Marcos & Ruiz Marín, Manuel & Mur Lacambra, Jesús, 2014. "Testing Spatial Causality in Cross-section Data," MPRA Paper 56678, University Library of Munich, Germany.
    2. Herrera Gómez, Marcos, 2013. "Análisis de Estructuras Espaciales Persistentes. Desempleo Departamental en Argentina [Persistent Spatial Structure Analysis. Regional Unemployment in Argentina]," MPRA Paper 49407, University Library of Munich, Germany.
    3. Marcos Herrera & Jesús Mur & Manuel Ruiz, 2016. "Detecting causal relationships between spatial processes," Papers in Regional Science, Wiley Blackwell, vol. 95(3), pages 577-594, August.
    4. Marynia Kolak & Luc Anselin, 2020. "A Spatial Perspective on the Econometrics of Program Evaluation," International Regional Science Review, , vol. 43(1-2), pages 128-153, January.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:8:y:2013:i:4:p:469-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.