IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/5671.html
   My bibliography  Save this paper

Reliability of recall in agricultural data

Author

Listed:
  • Beegle,Kathleen G.
  • Carletto,Calogero
  • Kastelic,Kristen Himelein
  • Beegle,Kathleen G.
  • Carletto,Calogero
  • Kastelic,Kristen Himelein

Abstract

Despite the importance of agriculture to economic development, and a vast accompanying literature on the subject, little research has been done on the quality of the underlying data. Due to survey logistics, agricultural data are usually collected by asking respondents to recall the details of events occurring during past agricultural seasons that took place a number of months prior to the interview. This gap can lead to recall bias in reported data on agricultural activities. The problem is further complicated when interviews are conducted over the course of several months, thus leading to recall of variable length. To test for such recall bias, the length of time between harvest and interview is examined for three African countries with respect to several common agricultural input and harvest measures. The analysis shows little evidence of recall bias impacting data quality. There is some indication that more salient events are less subject to recall decay. Overall, the results allay some concerns about the quality of some types of agricultural data collected through recall over lengthy periods.

Suggested Citation

  • Beegle,Kathleen G. & Carletto,Calogero & Kastelic,Kristen Himelein & Beegle,Kathleen G. & Carletto,Calogero & Kastelic,Kristen Himelein, 2011. "Reliability of recall in agricultural data," Policy Research Working Paper Series 5671, The World Bank.
  • Handle: RePEc:wbk:wbrwps:5671
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/192191468209990828/pdf/Reliability-of-recall-in-agricultural-data.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Margaret Grosh & Paul Glewwe, 2000. "Designing Household Survey Questionnaires for Developing Countries," World Bank Publications - Books, The World Bank Group, number 25338.
    2. Davis, Benjamin & Winters, Paul & Carletto, Gero & Covarrubias, Katia & Quiñones, Esteban J. & Zezza, Alberto & Stamoulis, Kostas & Azzarri, Carlo & DiGiuseppe, Stefania, 2010. "A Cross-Country Comparison of Rural Income Generating Activities," World Development, Elsevier, vol. 38(1), pages 48-63, January.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588.
    4. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    5. John Gibson, 2002. "Why Does the Engel Method Work? Food Demand, Economies of Size and Household Survey Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 341-359, September.
    6. George Judge & Laura Schechter, 2009. "Detecting Problems in Survey Data Using Benford’s Law," Journal of Human Resources, University of Wisconsin Press, vol. 44(1).
    7. James P. Smith & Duncan Thomas, 2003. "Remembrances of things past: test–retest reliability of retrospective migration histories," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 23-49, February.
    8. Fermont, Anneke & Benson, Todd, 2011. "Estimating yield of food crops grown by smallholder farmers: A review in the Uganda context," IFPRI discussion papers 1097, International Food Policy Research Institute (IFPRI).
    9. Gibson, John, 2002. "Why Does the Engel Method Work? Food Demand, Economies of Size and Household Survey Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 341-359, September.
    10. John Gibson & Bonggeun Kim, 2007. "Measurement Error in Recall Surveys and the Relationship between Household Size and Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 473-489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conforti, Piero & Grünberger, Klaus & Troubat, Nathalie, 2017. "The impact of survey characteristics on the measurement of food consumption," Food Policy, Elsevier, vol. 72(C), pages 43-52.
    2. Perali, Federico, 2008. "The second Engel law: Is it a paradox?," European Economic Review, Elsevier, vol. 52(8), pages 1353-1377, November.
    3. Nicole Jonker & Anneke Kosse, 2013. "Estimating Cash Usage: The Impact of Survey Design on Research Outcomes," De Economist, Springer, vol. 161(1), pages 19-44, March.
    4. Sanae Tashiro, 2009. "Differences in Food Preparation by Race and Ethnicity: Evidence from the American Time Use Survey," The Review of Black Political Economy, Springer;National Economic Association, vol. 36(3), pages 161-180, December.
    5. Trevon D. Logan, 2011. "Economies Of Scale In The Household: Puzzles And Patterns From The American Past," Economic Inquiry, Western Economic Association International, vol. 49(4), pages 1008-1028, October.
    6. Jayasinghe, Maneka & Chai, Andreas & Ratnasiri, Shyama & Smith, Christine, 2017. "The power of the vegetable patch: How home-grown food helps large rural households achieve economies of scale & escape poverty," Food Policy, Elsevier, vol. 73(C), pages 62-74.
    7. Kibrom A. Abay & Leah E. M. Bevis & Christopher B. Barrett, 2021. "Measurement Error Mechanisms Matter: Agricultural Intensification with Farmer Misperceptions and Misreporting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 498-522, March.
    8. John Gibson & Kathleen Beegle & Joachim De Weerdt & Jed Friedman, 2015. "What does Variation in Survey Design Reveal about the Nature of Measurement Errors in Household Consumption?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 466-474, June.
    9. Gibson, John, 2003. "Does Measurement Error Explain a Paradox About Household Size and Food Demand? Evidence from Variation in Household Survey Methods," 2003 Annual meeting, July 27-30, Montreal, Canada 22198, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Blessing M. Chiripanhura & Miguel Niño-Zarazúa, 2016. "The impacts of the food, fuel and financial crises on poor and vulnerable households in Nigeria: A retrospective approach to research inquiry," Development Policy Review, Overseas Development Institute, vol. 34(6), pages 763-788, November.
    11. Brzozowski, Matthew & Crossley, Thomas F. & Winter, Joachim K., 2017. "Does survey recall error explain the Deaton–Paxson puzzle?," Economics Letters, Elsevier, vol. 158(C), pages 18-20.
    12. Naeem Ahmed & Matthew Brzozowski & Thomas F. Crossley, 2005. "Measurement Errors in Recall Food Expenditure Data," Quantitative Studies in Economics and Population Research Reports 396, McMaster University.
    13. Ragui Assaad & Caroline Krafft & Shaimaa Yassin, 2018. "Comparing retrospective and panel data collection methods to assess labor market dynamics," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 8(1), pages 1-34, December.
    14. Böhme, Marcus & Thiele, Rainer, 2012. "Is the Informal Sector Constrained from the Demand Side? Evidence for Six West African Capitals," World Development, Elsevier, vol. 40(7), pages 1369-1381.
    15. Campos, Rodolfo G. & Reggio, Iliana, 2014. "Measurement error in imputation procedures," Economics Letters, Elsevier, vol. 122(2), pages 197-202.
    16. Brzozowski, Matthew & Crossley, Thomas F. & Winter, Joachim K., 2017. "A comparison of recall and diary food expenditure data," Food Policy, Elsevier, vol. 72(C), pages 53-61.
    17. Carletto,Calogero & Deininger,Klaus W. & Muwonge, James & Savastano,Sara & Carletto,Calogero & Deininger,Klaus W. & Muwonge, James & Savastano,Sara, 2011. "Can diaries help improve agricultural production statistics ? Evidence from Uganda," Policy Research Working Paper Series 5717, The World Bank.
    18. Timothy J. Halliday, 2010. "Mismeasured Household Size and its Implications for the Identification of Economies of Scale," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(2), pages 246-262, April.
    19. Backiny-Yetna, Prospère & Steele, Diane & Yacoubou Djima, Ismael, 2017. "The impact of household food consumption data collection methods on poverty and inequality measures in Niger," Food Policy, Elsevier, vol. 72(C), pages 7-19.
    20. Calogero Carletto & Dean Jolliffe & Raka Banerjee, 2015. "From Tragedy to Renaissance: Improving Agricultural Data for Better Policies," Journal of Development Studies, Taylor & Francis Journals, vol. 51(2), pages 133-148, February.

    More about this item

    Keywords

    Climate Change and Agriculture; Crops and Crop Management Systems; Educational Sciences; Food Security; Economics and Gender; Gender and Economic Policy; Gender and Poverty; Gender and Economics; Labor&Employment Law;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:5671. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.