IDEAS home Printed from https://ideas.repec.org/p/vnm/wpaper/149.html
   My bibliography  Save this paper

Asset price dynamics with small world interactions under hetereogeneous beliefs

Author

Listed:
  • Valentyn Panchenko

    () (School of Economics, University of New South Wales)

  • Sergiy Gerasymchuk

    () (Advanced School of Economics, University of Venice)

  • Oleg V. Pavlov

    (Department of Social Science and Policy Studies, Worchester Polytechnic Institute)

Abstract

We propose a simple model of a financial market populated with heterogeneous agents. The market represents a network with nodes symbolizing the agents and edges standing for connections between them, thus, embodying local interactions in the market. By local interactions we mean any kind of interplay between the decisions of the agents unaffected by the market mechanism and unrelated to the physical distance between the agents. Using the rewiring procedure we restructure a network from regular lattice to random graph by varying the probability of the agents to switch from one trading strategy to another. We study how the network structure influences the asset price dynamics. The results show that for some intermediate values of the probability to switch, corresponding to a small world network, the price dynamics become reminiscent to the real. While for the boundary values of the probability the dynamics lacks some typical features of the real financial markets.

Suggested Citation

  • Valentyn Panchenko & Sergiy Gerasymchuk & Oleg V. Pavlov, 2007. "Asset price dynamics with small world interactions under hetereogeneous beliefs," Working Papers 149, Department of Applied Mathematics, Università Ca' Foscari Venezia.
  • Handle: RePEc:vnm:wpaper:149
    as

    Download full text from publisher

    File URL: http://virgo.unive.it/wpideas/storage/2007wp149.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    2. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    3. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    4. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    5. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    6. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    7. Mikhail Anufriev & Giulio Bottazzi, 2004. "Asset Pricing Model with Heterogeneous Investment Horizons," LEM Papers Series 2004/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    9. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, pages 7-42.
    10. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    11. Duflo, Esther & Saez, Emmanuel, 2002. "Participation and investment decisions in a retirement plan: the influence of colleagues' choices," Journal of Public Economics, Elsevier, vol. 85(1), pages 121-148, July.
    12. Piergiuseppe Morone & Richard Taylor, 2004. "Knowledge diffusion dynamics and network properties of face-to-face interactions," Journal of Evolutionary Economics, Springer, vol. 14(3), pages 327-351, July.
    13. Venkatesh Bala & Sanjeev Goyal, 2000. "A Noncooperative Model of Network Formation," Econometrica, Econometric Society, vol. 68(5), pages 1181-1230, September.
    14. repec:cup:macdyn:v:4:y:2000:i:2:p:170-96 is not listed on IDEAS
    15. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word-of-Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    16. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, Oxford University Press, vol. 108(1), pages 137-156.
    17. Duffy, John, 2001. "Learning to speculate: Experiments with artificial and real agents," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 295-319, March.
    18. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    19. Joel A. C. Baum & Andrew V. Shipilov & Tim J. Rowley, 2003. "Where do small worlds come from?," Industrial and Corporate Change, Oxford University Press, vol. 12(4), pages 697-725, August.
    20. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    21. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
    22. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    23. Großklags, Jens & Schmidt, Carsten & Siegel, Jonathan, 2000. "Dumb software agents on an experimental asset market," SFB 373 Discussion Papers 2000,96, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    24. Bottazzi, Giulio & Dosi, Giovanni & Rebesco, Igor, 2005. "Institutional architectures and behavioral ecologies in the dynamics of financial markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 197-228, February.
    25. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2004. "Social Interaction and Stock-Market Participation," Journal of Finance, American Finance Association, vol. 59(1), pages 137-163, February.
    26. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(02), pages 170-196, June.
    27. Arnswald, Torsten, 2001. "Investment Behaviour of German Equity Fund Managers - An Exploratory Analysis of Survey Data," Discussion Paper Series 1: Economic Studies 2001,08, Deutsche Bundesbank, Research Centre.
    28. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    29. Shiller, 021Robert J. & Pound, John, 1989. "Survey evidence on diffusion of interest and information among investors," Journal of Economic Behavior & Organization, Elsevier, vol. 12(1), pages 47-66, August.
    30. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    31. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    2. Sergiy Gerasymchuk, 2008. "Asset return and wealth dynamics with reference dependent preferences and heterogeneous beliefs," Working Papers 160, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    3. De Kamps, Marc & Ladley, Daniel & Simaitis, Aistis, 2014. "Heterogeneous beliefs in over-the-counter markets," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 50-68.
    4. Chang Sheng-Kai, 2014. "Herd behavior, bubbles and social interactions in financial markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(1), pages 89-101, February.
    5. Gabriele Tedeschi & Stefania Vitali & Mauro Gallegati, 2014. "The dynamic of innovation networks: a switching model on technological change," Journal of Evolutionary Economics, Springer, vol. 24(4), pages 817-834, September.

    More about this item

    Keywords

    local interactions; networks; small world; heterogeneous beliefs; price dynamics; bifurcations; chaos;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vnm:wpaper:149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco LiCalzi). General contact details of provider: http://edirc.repec.org/data/dmvenit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.