IDEAS home Printed from https://ideas.repec.org/p/vic/vicewp/1702.html
   My bibliography  Save this paper

Analytic Bias Correction for Maximum Likelihood Estimators When the Bias Function is Non-Constant

Author

Abstract

Recently, many papers have obtained analytic expressions for the biases of various maximum likelihood estimators, despite their lack of closed-form solution. These bias expressions have provided an attractive alternative to the bootstrap. Unless the bias function is “flat,” however, the expressions are being evaluated at the wrong point(s). We propose an “improved” analytic bias adjusted estimator, in which the bias expression is evaluated at a more appropriate point (at the bias adjusted estimator itself). Simulations illustrate that the improved analytic bias adjusted estimator can eliminate significantly more bias than the simple estimator which has been well established in the literature.

Suggested Citation

  • Ryan T. Godwin & David E. Giles, 2017. "Analytic Bias Correction for Maximum Likelihood Estimators When the Bias Function is Non-Constant," Econometrics Working Papers 1702, Department of Economics, University of Victoria.
  • Handle: RePEc:vic:vicewp:1702
    Note: ISSN 1485-6441
    as

    Download full text from publisher

    File URL: https://www.uvic.ca/socialsciences/economics/_assets/docs/econometrics/EWP1702.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryan T. Godwin, 2016. "Bias reduction for the maximum likelihood estimator of the doubly-truncated Poisson distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(7), pages 1887-1901, April.
    2. Jacob Schwartz & David E. Giles, 2016. "Bias-reduced maximum likelihood estimation of the zero-inflated Poisson distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(2), pages 465-478, January.
    3. Jacob Schwartz & Ryan T. Godwin & David E. Giles, 2011. "Improved Maximum Likelihood Estimation of the Shape Parameter in the Nakagami Distribution," Econometrics Working Papers 1109, Department of Economics, University of Victoria.
    4. David E. Giles & Hui Feng & Ryan T. Godwin, 2016. "Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(8), pages 2465-2483, April.
    5. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    6. Cordeiro, Gauss M. & Klein, Ruben, 1994. "Bias correction in ARMA models," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 169-176, February.
    7. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    8. Jacob Schwartz & David E. Giles, 2011. "Biased-Reduced Maximum Likelihood Estimation for the Zero-Inflated Poisson Distribution," Econometrics Working Papers 1102, Department of Economics, University of Victoria.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Reath & Jianping Dong & Min Wang, 2018. "Improved parameter estimation of the log-logistic distribution with applications," Computational Statistics, Springer, vol. 33(1), pages 339-356, March.
    2. David E. Giles, 2012. "A Note on Improved Estimation for the Topp-Leone Distribution," Econometrics Working Papers 1203, Department of Economics, University of Victoria.
    3. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    4. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    5. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    6. Costa-Font, Joan & Jimenez-Martin, Sergi & Vilaplana, Cristina, 2018. "Does long-term care subsidization reduce hospital admissions and utilization?," Journal of Health Economics, Elsevier, vol. 58(C), pages 43-66.
    7. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    8. F. Cribari-Neto & G.M. Cordeiro, 1995. "On Bartlett and Bartlett-Type Corrections," Econometrics 9507001, University Library of Munich, Germany.
    9. David E. Giles & Hui Feng, 2009. "Bias of the Maximum Likelihood Estimators of the Two-Parameter Gamma Distribution Revisited," Econometrics Working Papers 0908, Department of Economics, University of Victoria.
    10. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    11. George Kapetanios, 2003. "Determining the Stationarity Properties of Individual Series in Panel Datasets," Working Papers 495, Queen Mary University of London, School of Economics and Finance.
    12. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    13. Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
    14. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    15. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    16. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    17. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    18. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    19. Badamasi Abba & Hong Wang, 2024. "A new failure times model for one and two failure modes system: A Bayesian study with Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 238(2), pages 304-323, April.
    20. Logar, Ivana & Brouwer, Roy & Campbell, Danny, 2020. "Does attribute order influence attribute-information processing in discrete choice experiments?," Resource and Energy Economics, Elsevier, vol. 60(C).

    More about this item

    Keywords

    bias reduction; maximum likelihood; nonlinear bias function;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vic:vicewp:1702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kali Moon (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.