IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v35y1997i2p155-164.html
   My bibliography  Save this article

Bias correction for a class of multivariate nonlinear regression models

Author

Listed:
  • Cordeiro, Gauss M.
  • Vasconcellos, Klaus L. P.

Abstract

In this paper, we derive general formulae for second-order biases of maximum likelihood estimates which can be applied to a wide class of multivariate nonlinear regression models. The class of models we consider is very rich and includes a number of commonly used models in econometrics and statistics as special cases, such as the univariate nonlinear model and the multivariate linear model. Our formulae are easy to compute and give bias-corrected maximum likelihood estimates to order n-1, where n is the sample size, by means of supplementary weighted linear regressions. They are also simple enough to be used algebraically in order to obtain closed-form expressions in special cases.

Suggested Citation

  • Cordeiro, Gauss M. & Vasconcellos, Klaus L. P., 1997. "Bias correction for a class of multivariate nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 155-164, September.
  • Handle: RePEc:eee:stapro:v:35:y:1997:i:2:p:155-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(97)00009-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallant, A. Ronald, 1975. "Seemingly unrelated nonlinear regressions," Journal of Econometrics, Elsevier, vol. 3(1), pages 35-50, February.
    2. Cordeiro, Gauss M. & Klein, Ruben, 1994. "Bias correction in ARMA models," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 169-176, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Patriota & Artur Lemonte & Heleno Bolfarine, 2011. "Improved maximum likelihood estimators in a heteroskedastic errors-in-variables model," Statistical Papers, Springer, vol. 52(2), pages 455-467, May.
    2. Di Caterina, Claudia & Kosmidis, Ioannis, 2019. "Location-adjusted Wald statistics for scalar parameters," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 126-142.
    3. Barreto-Souza, Wagner & Vasconcellos, Klaus L.P., 2011. "Bias and skewness in a general extreme-value regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1379-1393, March.
    4. Artur J. Lemonte & Germán Moreno–Arenas, 2020. "Improved Estimation for a New Class of Parametric Link Functions in Binary Regression," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 84-110, May.
    5. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    6. Zhang, Rui & Shonkwiler, J. Scott, 2017. "Bias Correction of Welfare measures in Non-Market Valuation: Comparison of the Delta Method, Jackknife and Bootstrap," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258099, Agricultural and Applied Economics Association.
    7. Patriota, Alexandre G. & Lemonte, Artur J., 2009. "Bias correction in a multivariate normal regression model with general parameterization," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1655-1662, August.
    8. Gauss Cordeiro & Lúcia Barroso, 2007. "A third-order bias corrected estimate in generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 76-89, May.
    9. Cordeiro, Gauss M. & Ferrari, Silvia L. P. & Uribe-Opazo, Miguel A. & Vasconcellos, Klaus L. P., 2000. "Corrected maximum-likelihood estimation in a class of symmetric nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 46(4), pages 317-328, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aslanidis, Nektarios, 2007. "Business Cycle Regimes in CEECs Production: A Threshold SURE Approach," Working Papers 2072/5318, Universitat Rovira i Virgili, Department of Economics.
    2. Gary King, 1989. "A Seemingly Unrelated Poisson Regression Model," Sociological Methods & Research, , vol. 17(3), pages 235-255, February.
    3. Perry Warjiyo & Wallace E. Huffman, 1997. "Dynamic input demand functions and resource adjustment for US agriculture: state evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 17(2-3), pages 223-237, December.
    4. Joseph Reath & Jianping Dong & Min Wang, 2018. "Improved parameter estimation of the log-logistic distribution with applications," Computational Statistics, Springer, vol. 33(1), pages 339-356, March.
    5. David Besanko & Sachin Gupta & Dipak Jain, 1998. "Logit Demand Estimation Under Competitive Pricing Behavior: An Equilibrium Framework," Management Science, INFORMS, vol. 44(11-Part-1), pages 1533-1547, November.
    6. Yuquan Chen & Xiaohua Yu, 2022. "Estimating market power for the Chinese fluid milk market with imported products," Agribusiness, John Wiley & Sons, Ltd., vol. 38(2), pages 386-401, April.
    7. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
    8. Ferrari, Silvia L. P. & Cribari-Neto, Francisco, 1998. "On bootstrap and analytical bias corrections," Economics Letters, Elsevier, vol. 58(1), pages 7-15, January.
    9. Winston T. Lin, 2005. "Currency forecasting based on an error components-seemingly unrelated nonlinear regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 593-605.
    10. Krebs, Tom & Krishna, Pravin & Maloney, William F., 2012. "Income risk, income mobility and welfare," Policy Research Working Paper Series 6254, The World Bank.
    11. Reinsel, Gregory C. & Cheang, Wai-Kwong, 2003. "Approximate ML and REML estimation for regression models with spatial or time series AR(1) noise," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 123-135, April.
    12. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    13. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    14. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    15. Yong Bao, 2015. "Should We Demean the Data?," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 163-171, May.
    16. von Auer, Ludwig & Weinand, Sebastian, 2022. "A nonlinear generalization of the country-product-dummy method," Discussion Papers 45/2022, Deutsche Bundesbank.
    17. Ghitany, M.E. & Al-Mutairi, D.K. & Balakrishnan, N. & Al-Enezi, L.J., 2013. "Power Lindley distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 20-33.
    18. Paul Cashin, 1991. "A Model Of The Disaggregated Demand For Meat In Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 35(3), pages 263-283, December.
    19. Naranjo, Andy & Protopapadakis, Aris, 1997. "Financial market integration tests: an investigation using US equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(2), pages 93-135, July.
    20. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:35:y:1997:i:2:p:155-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.