IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/1315.html
   My bibliography  Save this paper

IDEAL Quantile Inference via Interpolated Duals of Exact Analytic L-statistics

Author

Abstract

The literature has two types of fractional order statistics: an `ideal' (unobserved) type based on a beta distribution, and an observable type linearly interpolated between consecutive order statistics. We show convergence in distribution of the two types at an O(n-1) rate, which we also show holds for joint vectors and linear combinations of fractional order statistics. This connection justifies use of the linearly interpolated type in practice when sampling theory is based on the `ideal' type. For example, the coverage probability error (CPE) has the same O(n-1) magnitude for one- sample nonparametric joint confidence intervals over multiple quantiles. For a single quantile, our new analytic calibration reduces the CPE to nearly O(n-3/2), and our new inference method on linear combinations of quantiles has O(n-2/3) CPE. With additional theoretical work, we propose a new method for two-sample quantile treatment effect inference, which has two-sided CPE of order O(n-2/3), or O(n-1) under exchangeability, and one-sided CPE of order O(n-1/2). In an application of our method to data from a recent paper on "gift exchange," we reveal interesting heterogeneity in the treatment effect of "gift wages." In simulations, our quantile treatment effect hypothesis test compares favorably with existing methods in both size and power properties. Along the way, we provide highorder approximations of the PDF and PDF derivative of a Dirichlet distribution in terms of the normal.

Suggested Citation

  • David M. Kaplan & Matt Goldman, 2013. "IDEAL Quantile Inference via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1315, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:1315
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1YX7HSNhXgc4vGqZujkIP4Vh31xnfKh4G/view?usp=sharing
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
    2. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    3. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    4. Martina Björkman & Jakob Svensson, 2009. "Power to the People: Evidence from a Randomized Field Experiment on Community-Based Monitoring in Uganda," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(2), pages 735-769.
    5. Jones, M. C., 2002. "On fractional uniform order statistics," Statistics & Probability Letters, Elsevier, vol. 58(1), pages 93-96, May.
    6. Gary Charness & Uri Gneezy, 2009. "Incentives to Exercise," Econometrica, Econometric Society, vol. 77(3), pages 909-931, May.
    7. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
    8. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    9. Uri Gneezy & John A List, 2006. "Putting Behavioral Economics to Work: Testing for Gift Exchange in Labor Markets Using Field Experiments," Econometrica, Econometric Society, vol. 74(5), pages 1365-1384, September.
    10. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(2), pages 173-205, April.
    11. Daniel Janas, 1993. "A smoothed bootstrap estimator for a studentized sample quantile," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 317-329, June.
    12. Djebbari, Habiba & Smith, Jeffrey, 2008. "Heterogeneous impacts in PROGRESA," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 64-80, July.
    13. Alan Hutson, 1999. "Calculating nonparametric confidence intervals for quantiles using fractional order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(3), pages 343-353.
    14. Alan M. Polansky & William. R. Schucany, 1997. "Kernel Smoothing to Improve Bootstrap Confidence Intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 821-838.
    15. Wojciech Kopczuk & Emmanuel Saez & Jae Song, 2010. "Earnings Inequality and Mobility in the United States: Evidence from Social Security Data Since 1937," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 91-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    2. David M. Kaplan, 2013. "IDEAL Inference on Conditional Quantiles via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1316, Department of Economics, University of Missouri.
    3. Kaplan, David M., 2015. "Improved quantile inference via fixed-smoothing asymptotics and Edgeworth expansion," Journal of Econometrics, Elsevier, vol. 185(1), pages 20-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Kaplan & Matt Goldman, 2015. "Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics," Working Papers 1503, Department of Economics, University of Missouri.
    2. Matt Goldman & David M. Kaplan, 2018. "Non‐parametric inference on (conditional) quantile differences and interquantile ranges, using L‐statistics," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 136-169, June.
    3. Kaplan, David M., 2015. "Improved quantile inference via fixed-smoothing asymptotics and Edgeworth expansion," Journal of Econometrics, Elsevier, vol. 185(1), pages 20-32.
    4. David M. Kaplan, 2013. "IDEAL Inference on Conditional Quantiles via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1316, Department of Economics, University of Missouri.
    5. G�nther Fink & Margaret McConnell & Sebastian Vollmer, 2014. "Testing for heterogeneous treatment effects in experimental data: false discovery risks and correction procedures," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 6(1), pages 44-57, January.
    6. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    7. David M. Kaplan, 2014. "Nonparametric Inference on Quantile Marginal Effects," Working Papers 1413, Department of Economics, University of Missouri.
    8. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    9. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    10. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    11. Ferreira, Francisco H. G. & Firpo, Sergio & Galvao, Antonio F., 2017. "Estimation and Inference for Actual and Counterfactual Growth Incidence Curves," IZA Discussion Papers 10473, Institute of Labor Economics (IZA).
    12. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    13. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    14. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    15. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Quantile Random-Coefficient Regression with Interactive Fixed Effects: Heterogeneous Group-Level Policy Evaluation," Papers 2208.03632, arXiv.org, revised Nov 2024.
    16. repec:hal:journl:peer-00732534 is not listed on IDEAS
    17. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    18. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Estimation of Heterogeneous Treatment Effects Using Quantile Regression with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 13/22, Monash University, Department of Econometrics and Business Statistics.
    19. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    20. Burt S. Barnow & Jeffrey Smith, 2015. "Employment and Training Programs," NBER Chapters, in: Economics of Means-Tested Transfer Programs in the United States, Volume 2, pages 127-234, National Bureau of Economic Research, Inc.
    21. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.

    More about this item

    Keywords

    fractional order statistics; nonparametric statistics; quantile inference; quantile treatment effect;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:1315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.