IDEAS home Printed from https://ideas.repec.org/p/ulp/sbbeta/2025-18.html
   My bibliography  Save this paper

Using DSGE and Machine Learning to Forecast Public Debt for France

Author

Listed:
  • Emmanouil SOFIANOS
  • Thierry BETTI
  • Emmanouil Theophilos PAPADIMITRIOU
  • Amélie BARBIER-GAUCHARD
  • Periklis GOGAS

Abstract

Forecasting public debt is essential for effective policymaking and economic stability, yet traditional approaches face challenges due to data scarcity. While machine learning (ML) has demonstrated success in financial forecasting, its application to macroeconomic forecasting remains underexplored, hindered by short historical time series and low-frequency (e.g., quarterly/annual) data availability. This study proposes a novel hybrid framework integrating Dynamic Stochastic General Equilibrium (DSGE) modeling with ML techniques to address these limitations, focusing on the evolution of France’s public debt. We first generate a large synthetic macroeconomic dataset using an estimated DSGE model for France, which allows for efficient training of ML algorithms. These trained models are then applied to actual historical data for directional debt forecasting. The results show that the best machine learning model is an XGBoost achieving 90% accuracy. Our results highlight the viability of combining structural economic models with data-driven techniques to improve macroeconomic forecasting.

Suggested Citation

  • Emmanouil SOFIANOS & Thierry BETTI & Emmanouil Theophilos PAPADIMITRIOU & Amélie BARBIER-GAUCHARD & Periklis GOGAS, 2025. "Using DSGE and Machine Learning to Forecast Public Debt for France," Working Papers of BETA 2025-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
  • Handle: RePEc:ulp:sbbeta:2025-18
    as

    Download full text from publisher

    File URL: http://beta.u-strasbg.fr/WP/2025/2025-18.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    DSGE; Machine Learning; Public Debt; Forecasting; France.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • H63 - Public Economics - - National Budget, Deficit, and Debt - - - Debt; Debt Management; Sovereign Debt
    • H68 - Public Economics - - National Budget, Deficit, and Debt - - - Forecasts of Budgets, Deficits, and Debt

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulp:sbbeta:2025-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge The email address of this maintainer does not seem to be valid anymore. Please ask the person in charge to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/bestrfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.