IDEAS home Printed from https://ideas.repec.org/p/tcr/wpaper/e114.html
   My bibliography  Save this paper

Inter-firm Technological Proximity and Knowledge Spillovers

Author

Listed:
  • Koki Oikawa

Abstract

This paper has two objectives. One is to survey previous studies concerning indicators of technological proximity and distance to identify technological relationships between firms, particularly in terms of spillovers of technology and knowledge. The other objective is to reexamine the spillover effect in research and development by combining the traditional technological proximity with a measurement of within-field technological relationships, which is based on patent citation overlaps. I find that the average technological proximity is increasing over these three decades in the United States and within-field technological proximity shows sizable variations, and that the spillover effect is underestimated unless the changes in within- field proximities are taken into account.

Suggested Citation

  • Koki Oikawa, 2017. "Inter-firm Technological Proximity and Knowledge Spillovers," Working Papers e114, Tokyo Center for Economic Research.
  • Handle: RePEc:tcr:wpaper:e114
    as

    Download full text from publisher

    File URL: https://www.tcer.or.jp/wp/pdf/e114.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ufuk Akcigit & Murat Alp Celik & Jeremy Greenwood, 2016. "Buy, Keep, or Sell: Economic Growth and the Market for Ideas," Econometrica, Econometric Society, vol. 84, pages 943-984, May.
    2. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, vol. 37(9), pages 1556-1567, October.
    3. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    4. Nicholas Bloom & Mark Schankerman & John Van Reenen, 2013. "Identifying Technology Spillovers and Product Market Rivalry," Econometrica, Econometric Society, vol. 81(4), pages 1347-1393, July.
    5. Boldrin,Michele & Levine,David K., 2010. "Against Intellectual Monopoly," Cambridge Books, Cambridge University Press, number 9780521127264, July.
    6. Nooteboom, B. & Vanhaverbeke, W.P.M. & Duijsters, G.M. & Gilsing, V.A. & Oord, A., 2006. "Optimal Cognitive Distance and Absorptive Capacity," Other publications TiSEM eb5155cb-c888-4301-a667-9, Tilburg University, School of Economics and Management.
    7. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    8. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    9. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    10. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1119-1135.
    11. Nooteboom, Bart & Van Haverbeke, Wim & Duysters, Geert & Gilsing, Victor & van den Oord, Ad, 2007. "Optimal cognitive distance and absorptive capacity," Research Policy, Elsevier, vol. 36(7), pages 1016-1034, September.
    12. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    13. Aharonson, Barak S. & Schilling, Melissa A., 2016. "Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution," Research Policy, Elsevier, vol. 45(1), pages 81-96.
    14. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    15. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    16. Koki Oikawa & Minoru Kitahara, 2017. "Technology Polarization," Working Papers e113, Tokyo Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Marra & Marco Cucculelli & Alfredo Cartone, 2024. "So far, yet so close. Using networks of words to measure proximity and spillovers between firms," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 14(4), pages 973-1000, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsuyuki Kaneko & Yuya Kajikawa, 2023. "Novelty Score and Technological Relatedness Measurement Using Patent Information in Mergers and Acquisitions: Case Study in the Japanese Electric Motor Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(2), pages 163-177, June.
    2. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    3. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    4. Koki Oikawa & Minoru Kitahara, 2017. "Technology Polarization," Working Papers e113, Tokyo Center for Economic Research.
    5. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    6. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    7. Figueroa, Nicolás & Serrano, Carlos J., 2019. "Patent trading flows of small and large firms," Research Policy, Elsevier, vol. 48(7), pages 1601-1616.
    8. Steffen Runge & Christian Schwens & Matthias Schulz, 2022. "The invention performance implications of coopetition: How technological, geographical, and product market overlaps shape learning and competitive tension in R&D alliances," Strategic Management Journal, Wiley Blackwell, vol. 43(2), pages 266-294, February.
    9. Christian Omobhude & Shih-Hsin Chen, 2019. "The Roles and Measurements of Proximity in Sustained Technology Development: A Literature Review," Sustainability, MDPI, vol. 11(1), pages 1-30, January.
    10. Dai, Lu & Zhang, Jiajun & Luo, Shougui, 2022. "Effective R&D capital and total factor productivity: Evidence using spatial panel data models," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Kathryn Rudie Harrigan & Maria Chiara DiGuardo, 2017. "Sustainability of patent-based competitive advantage in the U.S. communications services industry," The Journal of Technology Transfer, Springer, vol. 42(6), pages 1334-1361, December.
    12. Subramanian, Annapoornima M. & Bo, Wang & Kah-Hin, Chai, 2018. "The role of knowledge base homogeneity in learning from strategic alliances," Research Policy, Elsevier, vol. 47(1), pages 158-168.
    13. Luigi Orsi & Andrea Ganzaroli & Ivan De Noni & Federica Marelli, 2016. "Evaluating post-acquisition technological performance by measuring absorption-related invention," International Journal of Entrepreneurship and Innovation Management, Inderscience Enterprises Ltd, vol. 20(1/2), pages 117-146.
    14. Shixiang Wang & Minyuan Zhao, 2018. "A tale of two distances: a study of technological distance, geographic distance and multilocation firms," Journal of Economic Geography, Oxford University Press, vol. 18(5), pages 1091-1120.
    15. François Lafond & Daniel Kim, 2019. "Long-run dynamics of the U.S. patent classification system," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 631-664, April.
    16. Kavusan, Korcan & Noorderhaven, Niels G. & Duysters, Geert M., 2016. "Knowledge acquisition and complementary specialization in alliances: The impact of technological overlap and alliance experience," Research Policy, Elsevier, vol. 45(10), pages 2153-2165.
    17. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    18. Hohberger, Jan & Kruger, Heidi & Almeida, Paul, 2020. "Does separation hurt? The impact of premature termination of R&D alliances on knowledge acquisition and innovation," Research Policy, Elsevier, vol. 49(6).
    19. Hugo Ernesto Martínez Ardila & Julián Eduardo Mora Moreno & Jaime Alberto Camacho Pico, 2020. "Networks of collaborative alliances: the second order interfirm technological distance and innovation performance," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1255-1282, August.
    20. Belderbos, René & Mohnen, Pierre, 2020. "Inter-sectoral and international R&D spillovers," MERIT Working Papers 2020-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcr:wpaper:e114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tctokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.