IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2020-02.html
   My bibliography  Save this paper

Comparing Deep Neural Network and Econometric Approaches to Predicting the Impact of Climate Change on Agricultural Yield

Author

Listed:
  • Timothy Neal

    (UNSW School of Economics)

  • Michael Keane

    (UNSW School of Economics)

Abstract

Predicting the impact of climate change on crop yield is difficult, in part because the production function mapping weather to yield is high dimensional and nonlinear. We compare three approaches to predicting yields: (i) deep neural networks (DNNs), (ii) traditional panel-data models, and (iii) a new panel-data model that allows for unit and time fixed-effects in both intercepts and slopes in the agricultural production function - made feasible by a new estimator developed by Keane and Neal (2020) called MO-OLS. Using U.S. county-level corn yield data from 1950-2015, we show that both DNNs and MO-OLS models outperform traditional panel data models for predicting yield, both in-sample and in a Monte Carlo cross-validation exercise. However, the MO-OLS model substantially outperforms both DNNs and traditional panel-data models in forecasting yield in a 2006-15 holdout sample. We compare predictions of all these models for climate change impacts on yields from 2016 to 2100.

Suggested Citation

  • Timothy Neal & Michael Keane, 2020. "Comparing Deep Neural Network and Econometric Approaches to Predicting the Impact of Climate Change on Agricultural Yield," Discussion Papers 2020-02, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2020-02
    as

    Download full text from publisher

    File URL: http://research.economics.unsw.edu.au/RePEc/papers/2020-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tannura, Michael A. & Irwin, Scott H. & Good, Darrel L., 2008. "Weather, Technology, and Corn and Soybean Yields in the U.S. Corn Belt," Marketing and Outlook Research Reports 37501, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    2. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    3. Timothy Neal & Michael Keane, 2020. "Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions," Discussion Papers 2018-08a, School of Economics, The University of New South Wales.
    4. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    5. Ethan E. Butler & Peter Huybers, 2013. "Adaptation of US maize to temperature variations," Nature Climate Change, Nature, vol. 3(1), pages 68-72, January.
    6. Elizabeth Marshall, & Marcel Aillery, & Scott Malcolm, & Ryan Williams,, 2015. "Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector," Economic Research Report 262203, United States Department of Agriculture, Economic Research Service.
    7. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    8. Kentaro Kawasaki & Shinsuke Uchida, 2016. "Quality Matters More Than Quantity: Asymmetric Temperature Effects on Crop Yield and Quality Grade," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1195-1209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Neal & Michael Keane, 2020. "Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions," Discussion Papers 2018-08a, School of Economics, The University of New South Wales.
    2. Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation and Inference for a Class of Generalized Hierarchical Models," Papers 2311.02789, arXiv.org, revised Apr 2024.
    3. Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation of Semiparametric Multi-Index Models Using Deep Neural Networks," Monash Econometrics and Business Statistics Working Papers 21/23, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Neal & Michael Keane, 2020. "Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions," Discussion Papers 2018-08a, School of Economics, The University of New South Wales.
    2. Michael Keane & Timothy Neal, 2020. "Climate change and U.S. agriculture: Accounting for multidimensional slope heterogeneity in panel data," Quantitative Economics, Econometric Society, vol. 11(4), pages 1391-1429, November.
    3. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    4. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2023. "Robust dynamic space–time panel data models using $$\varepsilon $$ ε -contamination: an application to crop yields and climate change," Empirical Economics, Springer, vol. 64(6), pages 2475-2509, June.
    5. Timothy Neal & Michael Keane, 2018. "The Impact of Climate Change on U.S. Agriculture: The Roles of Adaptation Techniques and Emissions Reductions," Discussion Papers 2018-08, School of Economics, The University of New South Wales.
    6. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    7. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    8. Michael Keane & Timothy Neal, 2017. "The Impact of Climate Change on U.S. Agriculture: New Evidence on the Role of Heterogeneity and Adaptation," Economics Papers 2017-W03, Economics Group, Nuffield College, University of Oxford.
    9. Amare, Mulubrhan & Balana, Bedru, 2023. "Climate change, income sources, crop mix, and input use decisions: Evidence from Nigeria," Ecological Economics, Elsevier, vol. 211(C).
    10. Wang, Di & Zhang, Peng & Chen, Shuai & Zhang, Ning, 2024. "Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010," Journal of Development Economics, Elsevier, vol. 166(C).
    11. Lis-Castiblanco, Catherine & Jordi, Louis, 2024. "Adaptation to Frost and Heat Risks in French Viticulture: Are Grape Growers Dumb Farmers?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343569, Agricultural and Applied Economics Association.
    12. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    13. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    14. Kamiar Mohaddes & Ryan N C Ng & M Hashem Pesaran & Mehdi Raissi & Jui-Chung Yang, 2023. "Climate change and economic activity: evidence from US states," Oxford Open Economics, Oxford University Press, vol. 2, pages 28-46.
    15. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    16. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    17. François Bareille & Raja Chakir, 2024. "Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 989-1019, May.
    18. Cécile Couharde & Rémi Generoso, 2023. "The financial cost of stabilizing US farm income under climate change," Working Papers hal-04159823, HAL.
    19. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    20. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).

    More about this item

    Keywords

    Climate Change; Crop Yield; Panel Data; Machine Learning; Neural Net;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2020-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hongyi Li (email available below). General contact details of provider: https://edirc.repec.org/data/senswau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.