IDEAS home Printed from https://ideas.repec.org/p/sur/surrec/0424.html
   My bibliography  Save this paper

Estimation and Inference of the Forecast Error Variance Decomposition for Set-Identified SVARs

Author

Listed:
  • Francesco Fusari

    (Newcastle University Business School)

  • Joe Marlow

    (University of Surrey)

  • Alessio Volpicella

    (University of Surrey)

Abstract

We study the Structural Vector Autoregressions (SVARs) that impose internal and external restrictions to set-identify the Forecast Error Variance Decomposition (FEVD). This object measures the importance of shocks for macroeconomic fluctuations and is therefore of first-order interest in business cycle analysis. We make the following contributions. First, we characterize the endpoints of the FEVD as the extreme eigenvalues of a symmetric reduced-form matrix. A consistent plug-in estimator naturally follows. Second, we use the perturbation theory to prove that the endpoints of the FEVD are differentiable. Third, we construct confidence intervals that are uniformly consistent in level and have asymptotic Bayesian interpretation. We also describe the conditions to derive uniformly consistent confidence intervals for impulse responses. A Monte-Carlo exercise demonstrates the approach properties in finite samples. An unconventional monetary policy application illustrates our toolkit.e of the cost of sovereign default, capturing the FDI activity of small firms better.

Suggested Citation

  • Francesco Fusari & Joe Marlow & Alessio Volpicella, 2024. "Estimation and Inference of the Forecast Error Variance Decomposition for Set-Identified SVARs," School of Economics Discussion Papers 0424, School of Economics, University of Surrey.
  • Handle: RePEc:sur:surrec:0424
    as

    Download full text from publisher

    File URL: https://repec.som.surrey.ac.uk/2024/DP04-24.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    2. Neville Francis & Michael T. Owyang & Jennifer E. Roush & Riccardo DiCecio, 2014. "A Flexible Finite-Horizon Alternative to Long-Run Restrictions with an Application to Technology Shocks," The Review of Economics and Statistics, MIT Press, vol. 96(4), pages 638-647, October.
    3. Gert Peersman & Roland Straub, 2009. "Technology Shocks And Robust Sign Restrictions In A Euro Area Svar," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 727-750, August.
    4. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    5. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Pellegrino & Efrem Castelnuovo & Giovanni Caggiano, 2023. "Uncertainty And Monetary Policy During The Great Recession," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(2), pages 577-606, May.
    2. Davis, Richard & Ng, Serena, 2023. "Time series estimation of the dynamic effects of disaster-type shocks," Journal of Econometrics, Elsevier, vol. 235(1), pages 180-201.
    3. Raffaella Giacomini & Toru Kitagawa & Matthew Read, 2021. "Identification and Inference Under Narrative Restrictions," Papers 2102.06456, arXiv.org.
    4. Michael Ryan, 2020. "An Anchor in Stormy Seas: Does Reforming Economic Institutions Reduce Uncertainty? Evidence from New Zealand," Working Papers in Economics 20/11, University of Waikato.
    5. Pintor, Gabor, 2016. "The macroeconomic shock with the highest price of risk," LSE Research Online Documents on Economics 86225, London School of Economics and Political Science, LSE Library.
    6. Georgiadis, Georgios & Müller, Gernot J. & Schumann, Ben, 2024. "Global risk and the dollar," Journal of Monetary Economics, Elsevier, vol. 144(C).
    7. Rujin, Svetlana, 2024. "Labor market institutions and technology-induced labor adjustment along the extensive and intensive margins," Journal of Macroeconomics, Elsevier, vol. 79(C).
    8. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    9. Bolboaca Maria & Fischer Sarah, 2021. "Unraveling News: Reconciling Conflicting Evidence," The B.E. Journal of Macroeconomics, De Gruyter, vol. 21(2), pages 695-743, June.
    10. Metiu, Norbert & Prieto, Esteban, 2023. "Time-varying stock return correlation, news shocks, and business cycles," Discussion Papers 05/2023, Deutsche Bundesbank.
    11. Victor Pontines, 2021. "The real effects of loan-to-value limits: empirical evidence from Korea," Empirical Economics, Springer, vol. 61(3), pages 1311-1350, September.
    12. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    13. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    14. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Ansgar Belke & Pascal Goemans, 2021. "Uncertainty and nonlinear macroeconomic effects of fiscal policy in the US: a SEIVAR-based analysis," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 49(4), pages 623-646, May.
    16. Goemans, Pascal & Belke, Ansgar, 2019. "Uncertainty and non-linear macroeconomic effects of fiscal policy in the US: A SEIVAR-based analysis," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203538, Verein für Socialpolitik / German Economic Association.
    17. Karamysheva, Madina & Skrobotov, Anton, 2022. "Do we reject restrictions identifying fiscal shocks? identification based on non-Gaussian innovations," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
    18. Marco Bernardini & Antonio M. Conti, 2023. "Announcement and implementation effects of central bank asset purchases," Temi di discussione (Economic working papers) 1435, Bank of Italy, Economic Research and International Relations Area.
    19. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    20. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2022. "Robust Bayesian inference in proxy SVARs," Journal of Econometrics, Elsevier, vol. 228(1), pages 107-126.

    More about this item

    JEL classification:

    • F13 - International Economics - - Trade - - - Trade Policy; International Trade Organizations
    • F21 - International Economics - - International Factor Movements and International Business - - - International Investment; Long-Term Capital Movements
    • F34 - International Economics - - International Finance - - - International Lending and Debt Problems

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sur:surrec:0424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ioannis Lazopoulos (email available below). General contact details of provider: https://edirc.repec.org/data/desuruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.