IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/330.html
   My bibliography  Save this paper

Identification, Estimation and Testing in Panel Data Models with Attrition: The Role of the Missing at Random Assumption

Author

Listed:

Abstract

This paper discusses identification, estimation and testing in panel data models with attrition. We focus on a situation which often occurs in the analysis of firms: Attrition (exit) is endogenous and depends on the outcomes of an observed stochastic process and the interest-parameters characterizing this process. Thus attrition is non-ignorable even if selection is based only on observed variables - that is, even if the missing items are missing at random (MAR). The likelihood function obtained by ignoring the attrition mechanism is a pseudo likelihood function. Assuming that the MAR condition holds, this paper establishes conditions for identification and consistent estimation based on the pseudo likelihood function. It is also shown that the MAR hypothesis has testable implications in many situations that are encountered in practice. Simulations suggest that in the case of the autoregressive model with random effects, the efficiency of the pseudo likelihood estimator (based on normality) is not much affected even by strong departures from normality. In a variety of simulation models, the pseudo likelihood estimator clearly outperforms the moment estimators - even when the latter are consistent.

Suggested Citation

  • Arvid Raknerud, 2002. "Identification, Estimation and Testing in Panel Data Models with Attrition: The Role of the Missing at Random Assumption," Discussion Papers 330, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:330
    as

    Download full text from publisher

    File URL: http://www.ssb.no/a/publikasjoner/pdf/DP/dp-330.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Hausman, Jerry A & Wise, David A, 1979. "Attrition Bias in Experimental and Panel Data: The Gary Income Maintenance Experiment," Econometrica, Econometric Society, vol. 47(2), pages 455-473, March.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Hahn, Jinyong, 1999. "How informative is the initial condition in the dynamic panel model with fixed effects?," Journal of Econometrics, Elsevier, vol. 93(2), pages 309-326, December.
    5. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    6. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    7. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    8. John M. Abowd & Bruno Crepon & Francis Kramarz, 1997. "Moment Estimation with Attrition," NBER Technical Working Papers 0214, National Bureau of Economic Research, Inc.
    9. repec:adr:anecst:y:1999:i:55-56:p:05 is not listed on IDEAS
    10. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    11. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Missing at random; non-ignorable attrition; unbalanced panel data; identification; pseudo likelihood; martingale.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/ssbgvno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.