IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Generalized Dynamic Factor Model + GARCH Exploiting Multivariate Information for Univariate Prediction

  • Lucia Alessi
  • Matteo Barigozzi
  • Marco Capasso

We propose a new model for multivariate forecasting which combines the Generalized Dynamic Factor Model (GDFM)and the GARCH model. The GDFM, applied to a huge number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns. In this financial analysis, both these components are modeled as a GARCH. We compare GDFM+GARCH and standard GARCH performance on samples up to 475 series, predicting both levels and volatility of returns. While results on levels are not significantly different, on volatility the GDFM+GARCH model outperforms the standard GARCH in most cases. These results are robust with respect to different volatility proxies.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.lem.sssup.it/WPLem/files/2006-13.pdf
Download Restriction: no

Paper provided by Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy in its series LEM Papers Series with number 2006/13.

as
in new window

Length:
Date of creation: 13 May 2006
Date of revision:
Handle: RePEc:ssa:lemwps:2006/13
Contact details of provider: Postal: Piazza dei Martiri della Liberta, 33, 56127 Pisa
Phone: +39-50-883343
Fax: +39-50-883344
Web page: http://www.lem.sssup.it/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Nijman, T.E. & Sentana, E., 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Other publications TiSEM 1faf40e0-ce91-45fd-a98d-4, Tilburg University, School of Economics and Management.
  2. Francis X. Diebold & Marc Nerlove, 1986. "The dynamics of exchange rate volatility: a multivariate latent factor ARCH model," Special Studies Papers 205, Board of Governors of the Federal Reserve System (U.S.).
  3. repec:ner:tilbur:urn:nbn:nl:ui:12-73202 is not listed on IDEAS
  4. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
  5. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
  6. Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
  7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  9. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  10. Kunitomo, Naoto, 1992. "Improving the Parkinson Method of Estimating Security Price Volatilities," The Journal of Business, University of Chicago Press, vol. 65(2), pages 295-302, April.
  11. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  12. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  13. Forni, Mario & Lippi, Marco & Reichlin, Lucrezia, 2003. "Opening the Black Box: Structural Factor Models versus Structural VARs," CEPR Discussion Papers 4133, C.E.P.R. Discussion Papers.
  14. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  15. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  16. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  17. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  18. Enrique Sentana, 1998. "The relation between conditionally heteroskedastic factor models and factor GARCH models," Econometrics Journal, Royal Economic Society, vol. 1(RegularPa), pages 1-9.
  19. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
  20. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2006/13. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.