IDEAS home Printed from
   My bibliography  Save this paper

Computing Center Manifolds: A Macroeconomic Example


  • Alex Haro
  • Pere Gomis-Poruqeras


When crossing the boundary of stability of a given dynamical system only indicates a bifurcation point and the type of the bifurcating solutions. But it doesn't tell us how and how many new solutions bifurcate or disappear in a bifurcation point. To answer this question one has to take into account the leading nonlinear terms. The Center manifold theorem helps to reduce the dimensionality of the phase space to the dimensionality of the so-called center manifold which in the bifurcation point is tangentially to the eigenspace of the marginal modes of the linear stability analysis. The center manifold theorem allows the dynamics to be projected onto the center manifold without loosing any significant aspect of the dynamics. Thus, the dynamics near a stationary co-dimension-one bifurcation can be decribed by an effective dynamics in a one-dimensional subspace. The dynamics projected onto the center manifold can by transformed to so-called normal forms by a nonlinear transformation of the phase space variables. In this paper we employ the techniques suggested by the center manifold theorem and explore the dynamics of an economic system as it moves away from the steady state. In particular we conisder the model by Azariadis, Bullard and Smith (2001) which is a dynamic general equilibrium model in which privately-issued liabilities may circulate, either by themselves, or alongside a stock of outside money which yileds a center manifold.

Suggested Citation

  • Alex Haro & Pere Gomis-Poruqeras, 2004. "Computing Center Manifolds: A Macroeconomic Example," Computing in Economics and Finance 2004 38, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:38

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    1. Boldrin, Michele & Rustichini, Aldo, 1994. "Growth and Indeterminacy in Dynamic Models with Externalities," Econometrica, Econometric Society, vol. 62(2), pages 323-342, March.
    2. Grandmont, Jean-Michel, 1985. "On Endogenous Competitive Business Cycles," Econometrica, Econometric Society, vol. 53(5), pages 995-1045, September.
    3. Gomis-Porqueras, Pere & Haro, Alex, 2007. "Global bifurcations, credit rationing and recurrent hyperinflations," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 473-491, February.
    4. Costas Azariadis & Roger Guesnerie, 1986. "Sunspots and Cycles," Review of Economic Studies, Oxford University Press, vol. 53(5), pages 725-737.
    5. Benhabib, Jess & Nishimura, Kazuo, 1979. "The hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth," Journal of Economic Theory, Elsevier, vol. 21(3), pages 421-444, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Center Manifolds; Nonlinear Dynamics;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.