IDEAS home Printed from https://ideas.repec.org/p/rif/dpaper/755.html
   My bibliography  Save this paper

Towards Efficient Pollution Control in the Baltic Sea. An anatomy of current failure with suggestions

Author

Listed:
  • Honkatukia, Juha
  • Ollikainen, Markku

Abstract

No abstract is available for this item.

Suggested Citation

  • Honkatukia, Juha & Ollikainen, Markku, 2001. "Towards Efficient Pollution Control in the Baltic Sea. An anatomy of current failure with suggestions," Discussion Papers 755, The Research Institute of the Finnish Economy.
  • Handle: RePEc:rif:dpaper:755
    as

    Download full text from publisher

    File URL: http://www.etla.fi/wp-content/uploads/2012/09/dp755.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaitala, Veijo & Maler, Karl-Goran & Tulkens, Henry, 1995. " The Acid Rain Game as a Resource Allocation Process with an Application to the International Cooperation among Finland, Russia and Estonia," Scandinavian Journal of Economics, Wiley Blackwell, vol. 97(2), pages 325-343, June.
    2. Ing-Marie Gren, 2001. "International Versus National Actions Against Nitrogen Pollution of the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 20(1), pages 41-59, September.
    3. Tahvonen Olli & Kaitala Veijo & Pohjola Matti, 1993. "A Finnish - Soviet Acid Rain Game: Noncooperative Equilibria, Cost Efficiency, and Sulfur Agreements," Journal of Environmental Economics and Management, Elsevier, vol. 24(1), pages 87-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nainggolan, Doan & Hasler, Berit & Andersen, Hans E. & Gyldenkærne, Steen & Termansen, Mette, 2018. "Water Quality Management and Climate Change Mitigation: Cost-effectiveness of Joint Implementation in the Baltic Sea Region," Ecological Economics, Elsevier, vol. 144(C), pages 12-26.
    2. Matero, Jukka & Saastamoinen, Olli, 2007. "In search of marginal environmental valuations -- ecosystem services in Finnish forest accounting," Ecological Economics, Elsevier, vol. 61(1), pages 101-114, February.
    3. Fröschl, Lena & Pierrard, Roger & Schönbäck, Wilfried, 2008. "Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania," Ecological Economics, Elsevier, vol. 68(1-2), pages 96-105, December.
    4. Mikołaj Czajkowski & Hans E. Andersen & Gite Blicher-Mathiasen & Wiktor Budziński & Katarina Elofsson & Jan Hagemejer & Berit Hasler & Christoph Humborg & James C. R. Smart & Erik Smedberg & Per Ståln, 2020. "Increasing the cost-effectiveness of water quality improvements through pollution abatement target-setting at different spatial scales," Working Papers 2020-02, Faculty of Economic Sciences, University of Warsaw.
    5. Hyytiainen, Kari & Ahtiainen, Heini & Heikkila, Jaakko & Helin, Janne & Huhtala, Anni & Iho, Antti & Koikkalainen, Kauko & Miettinen, Antti & Pouta, Eija & Vesterinen, Janne, 2009. "An integrated simulation model to evaluate national policies for the abatement of agricultural nutrients in the Baltic Sea," Discussion Papers 49896, MTT Agrifood Research Finland.
    6. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    7. Kari Hyytiäinen & Anni Huhtala, 2014. "Combating eutrophication in coastal areas at risk for oil spills," Annals of Operations Research, Springer, vol. 219(1), pages 101-121, August.
    8. Gren, Ing-Marie & Ang, Frederic, 2019. "Stacking of abatement credits for cost-effective achievement of climate and water targets," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lassi Ahlvik & Yulia Pavlova, 2013. "A Strategic Analysis of Eutrophication Abatement in the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 353-378, November.
    2. Gren, Ing-Marie & Folmer, Henk, 2003. "Cooperation with respect to cleaning of an international water body with stochastic environmental damage: the case of the Baltic Sea," Ecological Economics, Elsevier, vol. 47(1), pages 33-42, November.
    3. Smala Fanokoa, Pascaux & Telahigue, Issam & Zaccour, Georges, 2011. "Buying cooperation in an asymmetric environmental differential game," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 935-946, June.
    4. Tae-Yeoun Lee, 2001. "Effects of Technology Transfers on the Provision of Public Goods," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(2), pages 193-218, February.
    5. Andreas C Bryhn, 2009. "Sustainable Phosphorus Loadings from Effective and Cost-Effective Phosphorus Management Around the Baltic Sea," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-7, May.
    6. Kari Hyytiäinen & Anni Huhtala, 2014. "Combating eutrophication in coastal areas at risk for oil spills," Annals of Operations Research, Springer, vol. 219(1), pages 101-121, August.
    7. Nagase, Yoko & Silva, Emilson C. D., 2000. "Optimal Control of Acid Rain in a Federation with Decentralized Leadership and Information," Journal of Environmental Economics and Management, Elsevier, vol. 40(2), pages 164-180, September.
    8. Halkos, G.E., 1994. "Optimal acid rain abatement policy in Europe," MPRA Paper 33943, University Library of Munich, Germany.
    9. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    10. Larsson, Markus & Granstedt, Artur, 2010. "Sustainable governance of the agriculture and the Baltic Sea -- Agricultural reforms, food production and curbed eutrophication," Ecological Economics, Elsevier, vol. 69(10), pages 1943-1951, August.
    11. Fröschl, Lena & Pierrard, Roger & Schönbäck, Wilfried, 2008. "Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania," Ecological Economics, Elsevier, vol. 68(1-2), pages 96-105, December.
    12. Guennady Ougolnitsky, 2014. "Game theoretic formalization of the concept of sustainable development in the hierarchical control systems," Annals of Operations Research, Springer, vol. 220(1), pages 69-86, September.
    13. Halkos, George, 1994. "A game-theoretic approach to pollution control problems," MPRA Paper 33259, University Library of Munich, Germany.
    14. Gren, Ing-Marie, 2008. "Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea," Ecological Economics, Elsevier, vol. 66(2-3), pages 337-347, June.
    15. Lankoski, Jussi, 2013. "Counterfactual approach for assessing agri-environmental policy: The case of the Finnish water protection policy," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 94(2).
    16. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    17. Fünfgelt, Joachim & Schulze, Günther G., 2016. "Endogenous environmental policy for small open economies with transboundary pollution," Economic Modelling, Elsevier, vol. 57(C), pages 294-310.
    18. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.
    19. Flåm, Sjur Didrik, 2002. "Balanced Environmental Games," Working Papers in Economics 17/02, University of Bergen, Department of Economics.
    20. Eriksson, Clas & Persson, Joakim, 2002. "Economic Growth, Inequality, Democratization, and the Environment," Working Paper Series 178, Trade Union Institute for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rif:dpaper:755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kaija Hyvönen-Rajecki (email available below). General contact details of provider: https://edirc.repec.org/data/etlaafi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.