IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2020-02.html
   My bibliography  Save this paper

Increasing the cost-effectiveness of water quality improvements through pollution abatement target-setting at different spatial scales

Author

Listed:
  • Mikołaj Czajkowski

    (Faculty of Economic Sciences, University of Warsaw)

  • Hans E. Andersen

    (Department of Bioscience, Aarhus University)

  • Gite Blicher-Mathiasen

    (Department of Bioscience, Aarhus University
    Faculty of Economic Sciences, University of Warsaw)

  • Wiktor Budziński

    (Faculty of Economic Sciences, University of Warsaw)

  • Katarina Elofsson

    (Department of Bioscience, Aarhus University)

  • Jan Hagemejer

    (Faculty of Economic Sciences, University of Warsaw)

  • Berit Hasler

    (Department of Bioscience, Aarhus University)

  • Christoph Humborg

    (Department of Environmental Science, Stockholm University)

  • James C. R. Smart

    (Australian Rivers Institute, Griffith University)

  • Erik Smedberg

    (Department of Environmental Science, Stockholm University)

  • Per Stålnacke

    (Department of Water Resources, Norwegian Institute of Bioeconomy Research)

  • Hans Thodsen

    (Department of Bioscience, Aarhus University)

  • Adam Wąs

    (Warsaw University of Life Sciences, Faculty of Economic Sciences)

  • Maciej Wilamowski

    (Faculty of Economic Sciences, University of Warsaw)

  • Tomasz Żylicz

    (Faculty of Economic Sciences, University of Warsaw)

  • Nick Hanley

    (Animal Health and Comparative Medicine, University of Glasgow, Institute of Biodiversity)

Abstract

In this paper, we investigate the potential gains in cost-effectiveness from changing the spatial scale at which nutrient reduction targets are set for the Baltic Sea, focusing on nutrient loadings associated with agriculture. Costs of achieving loadings reductions are compared across five levels of spatial scale, namely the entire Baltic Sea; the marine basin level; the country level; the watershed level; and the grid square level. A novel highly disaggregated model, which represents decreases in agricultural profits, changes in root zone N concentrations and transport to the Baltic Sea is proposed, and is then used to estimate the gains in cost-effectiveness from changing the spatial scale of nutrient reduction targets. The model includes 14 Baltic Sea marine basins, 14 countries, 117 watersheds and 19,023 10-by-10 km grid squares. A range of policy options are identified which approach the cost-effective reductions in N loadings identified by the constrained optimization model. We argue that our results have important implications for both domestic and international policy design for achieving water quality improvements where non-point pollution is a key stressor of water quality.

Suggested Citation

  • Mikołaj Czajkowski & Hans E. Andersen & Gite Blicher-Mathiasen & Wiktor Budziński & Katarina Elofsson & Jan Hagemejer & Berit Hasler & Christoph Humborg & James C. R. Smart & Erik Smedberg & Per Ståln, 2020. "Increasing the cost-effectiveness of water quality improvements through pollution abatement target-setting at different spatial scales," Working Papers 2020-02, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2020-02
    as

    Download full text from publisher

    File URL: https://www.wne.uw.edu.pl/index.php/download_file/5367/
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James S. Shortle & Richard D. Horan, 2001. "The Economics of Nonpoint Pollution Control," Journal of Economic Surveys, Wiley Blackwell, vol. 15(3), pages 255-289, July.
    2. Ing-Marie Gren & Paul Jannke & Katarina Elofsson, 1997. "Cost-Effective Nutrient Reductions to the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 10(4), pages 341-362, December.
    3. Heini Ahtiainen & Janne Artell & Mikołaj Czajkowski & Berit Hasler & Linus Hasselström & Anni Huhtala & Jürgen Meyerhoff & James C.R. Smart & Tore Söderqvist & Mohammed H. Alemu & Daija Angeli & Kim D, 2014. "Benefits of meeting nutrient reduction targets for the Baltic Sea - a contingent valuation study in the nine coastal states," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 3(3), pages 278-305, November.
    4. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    5. Aftab, Ashar & Hanley, Nick & Baiocchi, Giovanni, 2010. "Integrated regulation of nonpoint pollution: Combining managerial controls and economic instruments under multiple environmental targets," Ecological Economics, Elsevier, vol. 70(1), pages 24-33, November.
    6. William J. Baumol & Wallace E. Oates, 1971. "The Use of Standards and Prices for Protection of the Environment," Palgrave Macmillan Books, in: Peter Bohm & Allen V. Kneese (ed.), The Economics of Environment, pages 53-65, Palgrave Macmillan.
    7. Brady, Mark, 2003. "The relative cost-efficiency of arable nitrogen management in Sweden," Ecological Economics, Elsevier, vol. 47(1), pages 53-70, November.
    8. Markowska, Agnieszka & Zylicz, Tomasz, 1999. "Costing an international public good: the case of the Baltic Sea," Ecological Economics, Elsevier, vol. 30(2), pages 301-316, August.
    9. Segerson, Kathleen, 1988. "Uncertainty and incentives for nonpoint pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 15(1), pages 87-98, March.
    10. Suter, Jordan F. & Vossler, Christian A. & Poe, Gregory L. & Segerson, Kathleen, 2008. "AJAE Appendix: Experiments on Damage-Based Ambient Taxes for Nonpoint Source Polluters," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 90(1), pages 1-14, February.
    11. Honkatukia, Juha & Ollikainen, Markku, 2001. "Towards Efficient Pollution Control in the Baltic Sea. An anatomy of current failure with suggestions," Discussion Papers 755, The Research Institute of the Finnish Economy.
    12. Douglas M. Larson & Gloria E. Helfand & Brett W. House, 1996. "Second-Best Tax Policies to Reduce Nonpoint Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1108-1117.
    13. Kaitala, Veijo & Maler, Karl-Goran & Tulkens, Henry, 1995. " The Acid Rain Game as a Resource Allocation Process with an Application to the International Cooperation among Finland, Russia and Estonia," Scandinavian Journal of Economics, Wiley Blackwell, vol. 97(2), pages 325-343, June.
    14. Wąs, Adam & Malak-Rawlikowska, Agata & Majewski, Edward, 2018. "The new delivery model of the Common Agricultural Policy after 2020 - challenges for Poland," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 289205, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    15. Jordan F. Suter & Christian A. Vossler & Gregory L. Poe & Kathleen Segerson, 2008. "Experiments on Damage-Based Ambient Taxes for Nonpoint Source Polluters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(1), pages 86-102.
    16. Aftab, Ashar & Hanley, Nick & Baiocchi, Giovanni, 2017. "Transferability of Policies to Control Agricultural Nonpoint Pollution in Relatively Similar Catchments," Ecological Economics, Elsevier, vol. 134(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Shortle & Richard D. Horan, 2013. "Policy Instruments for Water Quality Protection," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 111-138, June.
    2. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    3. Hamet Sarr & Mohamed Ali Bchir & Francois Cochard & Anne Rozan, 2016. "Nonpoint source pollution: An experimental investigation of the Average Pigouvian Tax," Working Papers hal-01375078, HAL.
    4. Hamet SARR & Mohamed Ali BCHIR & François COCHARD & Anne ROZAN, 2016. "Nonpoint source pollution: An experimental investigation of the Average Pigouvian Tax," Working Papers 2016-05, CRESE.
    5. Marc Willinger & Nasreddine Ammar & Ahmed Ennasri, 2014. "Performance of the Ambient Tax: Does the Nature of the Damage Matter?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(3), pages 479-502, November.
    6. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    7. Sheila M. Olmstead, 2010. "The Economics of Water Quality," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 44-62, Winter.
    8. Suter, Jordan F. & Vossler, Christian A. & Poe, Gregory L., 2009. "Ambient-based pollution mechanisms: A comparison of homogeneous and heterogeneous groups of emitters," Ecological Economics, Elsevier, vol. 68(6), pages 1883-1892, April.
    9. Kari Hyytiäinen & Lassi Ahlvik & Heini Ahtiainen & Janne Artell & Anni Huhtala & Kim Dahlbo, 2015. "Policy Goals for Improved Water Quality in the Baltic Sea: When do the Benefits Outweigh the Costs?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 217-241, June.
    10. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    11. Camacho-Cuena, Eva & Requate, Till, 2012. "The regulation of non-point source pollution and risk preferences: An experimental approach," Ecological Economics, Elsevier, vol. 73(C), pages 179-187.
    12. Banerjee, Simanti & Cason, Timothy N. & de Vries, Frans P. & Hanley, Nick, 2017. "Transaction costs, communication and spatial coordination in Payment for Ecosystem Services Schemes," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 68-89.
    13. Encarna Esteban & José Albiac, 2016. "Salinity Pollution Control in the Presence of Farm Heterogeneity — An Empirical Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-20, June.
    14. Philippe Bontems & Gilles Rotillon & Nadine Turpin, 2008. "Acceptable reforms of agri-environmental policies," Revue d'économie politique, Dalloz, vol. 118(6), pages 847-883.
    15. Ahmad Naimzada & Marina Pireddu, 2023. "Differentiated goods in a dynamic Cournot duopoly with emission charges on output," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 305-318, June.
    16. Ohnishi, Kazuhiro, 2021. "The environmental effect of ambient charges in mixed triopoly with diverse firm objectives," MPRA Paper 108521, University Library of Munich, Germany.
    17. Anna Lungarska & Pierre-Alain Jayet, 2018. "Impact of Spatial Differentiation of Nitrogen Taxes on French Farms’ Compliance Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 1-21, January.
    18. Ing-Marie Gren, 2001. "International Versus National Actions Against Nitrogen Pollution of the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 20(1), pages 41-59, September.
    19. Li, Tongzhe & Fooks, Jacob R. & Messer, Kent D. & Ferraro, Paul J., 2021. "A field experiment to estimate the effects of anchoring and framing on residents’ willingness to purchase water runoff management technologies," Resource and Energy Economics, Elsevier, vol. 63(C).
    20. Gaston Giordana & Marc Willinger, 2013. "Regulatory instruments for monitoring ambient pollution," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 7, pages 193-232, Edward Elgar Publishing.

    More about this item

    Keywords

    cost-effectiveness; nutrient pollution; agricultural run-off; Baltic Sea; eutrophication;
    All these keywords.

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • F53 - International Economics - - International Relations, National Security, and International Political Economy - - - International Agreements and Observance; International Organizations
    • R52 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Land Use and Other Regulations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2020-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.