IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0005417.html
   My bibliography  Save this article

Sustainable Phosphorus Loadings from Effective and Cost-Effective Phosphorus Management Around the Baltic Sea

Author

Listed:
  • Andreas C Bryhn

Abstract

Nutrient over-enrichment of the Baltic Sea, accompanied by intensified algal blooms and decreasing water clarity, has aroused widespread concern in the surrounding countries during the last four decades. This work has used a well-tested dynamic mass-balance model to investigate which decrease in total phosphorus loading would be required to meet the environmental goal to restore the trophic state in the Baltic Sea to pre-1960s levels. Furthermore, the extent to which various abatement options may decrease the phosphorus loading in a cost-effective manner has been studied. Upgrading urban sewage treatment in the catchment could, alone or in combination with banning phosphates in detergents, be sufficient to meet the set environmental goal, at an estimated annual basin-wide cost of 0.21–0.43 billion euro. Such a plan would potentially decrease the total phosphorus loading to the Baltic Sea with 6,650–10,200 tonnes per year.

Suggested Citation

  • Andreas C Bryhn, 2009. "Sustainable Phosphorus Loadings from Effective and Cost-Effective Phosphorus Management Around the Baltic Sea," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-7, May.
  • Handle: RePEc:plo:pone00:0005417
    DOI: 10.1371/journal.pone.0005417
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005417
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0005417&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0005417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Turner, R. Kerry & Georgiou, Stavros & Gren, Ing-Marie & Wulff, Fredric & Barrett, Scott & Soderqvist, Tore & Bateman, Ian J. & Folke, Carl & Langaas, Sindre & Zylicz, Tomasz, 1999. "Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study," Ecological Economics, Elsevier, vol. 30(2), pages 333-352, August.
    2. Ing-Marie Gren, 2001. "International Versus National Actions Against Nitrogen Pollution of the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 20(1), pages 41-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pattison-Williams, John K. & Yang, Wanhong & Liu, Yongbo & Gabor, Shane, 2017. "Riparian wetland conservation: A case study of phosphorous and social return on investment in the Black River watershed," Ecosystem Services, Elsevier, vol. 26(PB), pages 400-410.
    2. Grames, Johanna & Zoboli, Ottavia & Laner, David & Rechberger, Helmut & Zessner, Matthias & Sánchez-Romero, Miguel & Prskawetz, Alexia, 2019. "Understanding feedbacks between economic decisions and the phosphorus resource cycle: A general equilibrium model including material flows," Resources Policy, Elsevier, vol. 61(C), pages 311-347.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    2. Larsson, Markus & Granstedt, Artur, 2010. "Sustainable governance of the agriculture and the Baltic Sea -- Agricultural reforms, food production and curbed eutrophication," Ecological Economics, Elsevier, vol. 69(10), pages 1943-1951, August.
    3. Fröschl, Lena & Pierrard, Roger & Schönbäck, Wilfried, 2008. "Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania," Ecological Economics, Elsevier, vol. 68(1-2), pages 96-105, December.
    4. Gren, Ing-Marie, 2008. "Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea," Ecological Economics, Elsevier, vol. 66(2-3), pages 337-347, June.
    5. Lassi Ahlvik & Yulia Pavlova, 2013. "A Strategic Analysis of Eutrophication Abatement in the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 353-378, November.
    6. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    7. Marita Laukkanen & Anni Huhtala, 2008. "Optimal management of a eutrophied coastal ecosystem: balancing agricultural and municipal abatement measures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 139-159, February.
    8. Ing-Marie Gren & Paul Jannke & Katarina Elofsson, 1997. "Cost-Effective Nutrient Reductions to the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 10(4), pages 341-362, December.
    9. Kari Hyytiäinen & Anni Huhtala, 2014. "Combating eutrophication in coastal areas at risk for oil spills," Annals of Operations Research, Springer, vol. 219(1), pages 101-121, August.
    10. Brady, Mark, 2003. "The relative cost-efficiency of arable nitrogen management in Sweden," Ecological Economics, Elsevier, vol. 47(1), pages 53-70, November.
    11. Kari Hyytiäinen & Lassi Ahlvik & Heini Ahtiainen & Janne Artell & Anni Huhtala & Kim Dahlbo, 2015. "Policy Goals for Improved Water Quality in the Baltic Sea: When do the Benefits Outweigh the Costs?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 217-241, June.
    12. Tenwalde, Tracy & Jones, Eugene & Hitzhusen, Frederick J., 2005. "An Economic Analysis of Consumer Expenditures for Safe Drinking Water: Addressing Nitrogen Risk with an Averting Cost Approach," 2005 Annual meeting, July 24-27, Providence, RI 19431, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Gren, Ing-Marie, 1999. "Value of land as a pollutant sink for international waters," Ecological Economics, Elsevier, vol. 30(3), pages 419-431, September.
    14. Carolus, Johannes Friedrich & Hanley, Nick & Olsen, Søren Bøye & Pedersen, Søren Marcus, 2018. "A Bottom-up Approach to Environmental Cost-Benefit Analysis," Ecological Economics, Elsevier, vol. 152(C), pages 282-295.
    15. Isaksson, Lena Hoglund, 2005. "Abatement costs in response to the Swedish charge on nitrogen oxide emissions," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 102-120, July.
    16. Honkatukia, Juha & Ollikainen, Markku, 2001. "Towards Efficient Pollution Control in the Baltic Sea. An anatomy of current failure with suggestions," Discussion Papers 755, The Research Institute of the Finnish Economy.
    17. Lankoski, Jussi, 2013. "Counterfactual approach for assessing agri-environmental policy: The case of the Finnish water protection policy," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 94(2).
    18. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    19. Fünfgelt, Joachim & Schulze, Günther G., 2016. "Endogenous environmental policy for small open economies with transboundary pollution," Economic Modelling, Elsevier, vol. 57(C), pages 294-310.
    20. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0005417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.