IDEAS home Printed from https://ideas.repec.org/p/rdg/emxxdp/em-dp2013-04.html
   My bibliography  Save this paper

Optimal Linear Filtering, Smoothing and Trend Extraction for the m-th Differences of a Unit Root Process: A Singular Spectrum Analysis Approach

Author

Listed:
  • Dimitrios Thomakos

    () (Department of Economics, University of Peloponnese Tripolis, Greece)

  • Hossein Hassani

    () (Executive Business Centre, Bournemouth University)

  • Kerry Patterson

    () (Department of Economics, University of Reading)

Abstract

The problem of optimal linear filtering, smoothing and trend extraction for m-period differences of processes with a unit root is studied. Such processes arise naturally in economics and finance, in the form of rates of change (price inflation, economic growth, financial returns) and finding an appropriate smoother is thus of immediate practical interest. The filter and resulting smoother are based on the methodology of Singular Spectrum Analysis (SSA). An explicit representation for the asymptotic decomposition of the covariance matrix is obtained. The structure of the impulse and frequency response functions indicates that the optimal filter has a “permanent” and a “transitory component”, with the corresponding smoother being the sum of two such components. Moreover, a particular form for the extrapolation coefficients that can be used in out-of-sample prediction is proposed. In addition, an explicit representation for the filtering weights in the context of SSA for an arbitrary covariance matrix is derived. This result allows one to examine the specific effects of smoothing in any situation. The theoretical results are llustrated using different data sets, namely U.S. inflation and real GDP growth.

Suggested Citation

  • Dimitrios Thomakos & Hossein Hassani & Kerry Patterson, 2013. "Optimal Linear Filtering, Smoothing and Trend Extraction for the m-th Differences of a Unit Root Process: A Singular Spectrum Analysis Approach," Economics & Management Discussion Papers em-dp2013-04, Henley Business School, Reading University.
  • Handle: RePEc:rdg:emxxdp:em-dp2013-04
    as

    Download full text from publisher

    File URL: http://www.reading.ac.uk/web/FILES/economics/emdp2013101.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    2. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    3. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    5. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    6. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    7. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    8. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    9. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    10. Christoph Schleicher, 2003. "Kolmogorov-Wiener Filters for Finite Time Series," Computing in Economics and Finance 2003 109, Society for Computational Economics.
    11. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    12. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    13. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    core inflation; business cycles; differences; euro; linear filtering; singular spectrum analysis; smoothing; trend extraction and prediction; unit root;

    JEL classification:

    • N - Economic History
    • A - General Economics and Teaching

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:emxxdp:em-dp2013-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marie Pearson). General contact details of provider: http://edirc.repec.org/data/bsrdguk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.