IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/83990.html
   My bibliography  Save this paper

Functional GARCH models: the quasi-likelihood approach and its applications

Author

Listed:
  • Cerovecki, Clément
  • Francq, Christian
  • Hormann, Siegfried
  • Zakoian, Jean-Michel

Abstract

The increasing availability of high frequency data has initiated many new research areas in statistics. Functional data analysis (FDA) is one such innovative approach towards modelling time series data. In FDA, densely observed data are transformed into curves and then each (random) curve is considered as one data object. A natural, but still relatively unexplored, context for FDA methods is related to financial data, where high-frequency trading currently takes a significant proportion of trading volumes. Recently, articles on functional versions of the famous ARCH and GARCH models have appeared. Due to their technical complexity, existing estimators of the underlying functional parameters are moment based---an approach which is known to be relatively inefficient in this context. In this paper, we promote an alternative quasi-likelihood approach, for which we derive consistency and asymptotic normality results. We support the relevance of our approach by simulations and illustrate its use by forecasting realised volatility of the S$\&$P100 Index.

Suggested Citation

  • Cerovecki, Clément & Francq, Christian & Hormann, Siegfried & Zakoian, Jean-Michel, 2018. "Functional GARCH models: the quasi-likelihood approach and its applications," MPRA Paper 83990, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:83990
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/83990/1/MPRA_paper_83990.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. repec:bla:jtsera:v:38:y:2017:i:1:p:3-21 is not listed on IDEAS
    3. Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(02), pages 561-570, April.
    4. Francq, Christian & Zakoïan, Jean-Michel, 2012. "Qml Estimation Of A Class Of Multivariate Asymmetric Garch Models," Econometric Theory, Cambridge University Press, vol. 28(01), pages 179-206, February.
    5. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    8. Hörmann, Siegfried & Horváth, Lajos & Reeder, Ron, 2013. "A Functional Version Of The Arch Model," Econometric Theory, Cambridge University Press, vol. 29(02), pages 267-288, April.
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    11. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    12. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    13. Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017. "Functional Generalized Autoregressive Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Functional time series; High-frequency volatility models; Intraday returns; Functional QMLE; Stationarity of functional GARCH;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:83990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.